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ПРЕДИСЛОВИЕ 

 

 

 

 

Цитомегаловирусная (ЦМВ) инфекция остается серьезной про-

блемой для здоровья во всем мире. Возбудителем является ЦМВ, также 

называемый вирусом герпеса человека 5 типа. ЦМВ относится к I груп-

пе Балтиморской классификации, в частности, к подсемейству 

Betaherpesvirinae семейства Herpesviridae (Gugliesi F. et al., 2020). Необ-

ходимость изучения ЦМВ обусловлена его широким распространением, 

причем серопревалентность среди населения мира колеблется от 40-99% 

в зависимости от географического положения и социально-

экономического статуса (Britt W.J., 2018; Collins-McMillen D. et al., 

2018). В Российской Федерации, по данным различных авторов, частота 

выявления маркеров ЦМВ у женщин достигает 90%. Среди женщин 

старше 30 лет инфицированы 98% (Короткова Н.А., Прилепская В.Н., 

2016; Кытикова О.Ю. и соавт., 2017).  

ЦМВ обладает широким клеточным тропизмом, который включает 

эпителиальные клетки железистых и слизистых тканей, гладкомышеч-

ные клетки, фибробласты, макрофаги, гепатоциты, дендритные клетки и 

эндотелиоциты (Sinzger C. et al., 2008). Большая часть патогенеза, свя-

занного с ЦМВ, объясняется способностью вируса устанавливать посто-

янную пожизненную инфекцию через латентность. В латентном состоя-

нии вирусный геном сохраняется в клетке-хозяине без активной репли-

кации или продукции нового вирусного потомства, но со способностью 

к репликации вируса (Collins-McMillen D. et al., 2018). Реактивация ви-

руса может происходить в результате ослабления иммунологического 

контроля. К таким состояниям относят беременность, что сопровожда-

ется супрессорной перестройкой иммунной системы, цель которой фор-

мирование и поддержка иммунологической толерантности к развиваю-

щемуся плоду. Прогнозировать начало материнской ЦМВ инфекции 

сложно. Симптомы, свидетельствующие о ЦМВ, обычно не распознают-

ся клинически, поскольку отсутствует симптомокомплекс, связанный с 

ЦМВ инфекцией у беременных (Pass R.F., Arav-Boger R., 2018).  
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Цитомегаловирус является наиболее распространенной причиной 

врожденной инфекции. Кроме того, врожденная ЦМВ инфекция являет-

ся ведущей негенетической причиной нейросенсорной потери слуха, 

причиной умственной отсталости, когнитивных нарушений, микроце-

фалии, церебрального паралича, гепатоспленомегалии, ретинита, за-

держки внутриутробного развития и антенатальной гибели плода. Ци-

томегаловирусная инфекция может протекать бессимптомно, однако в 

10-15% таких случаев впоследствии развиваются неврологические, слу-

ховые и зрительные дефекты, которые становятся очевидными в более 

позднем возрасте (Gugliesi F. et al., 2020). 

Цитомегаловирусная инфекция при беременности не всегда при-

водит к внутриутробному инфицированию плода, однако это не означа-

ет полное отсутствие последствий для плода. Патологическое течение 

беременности, высокий риск развития самопроизвольного выкидыша, 

плацентарной недостаточности, многоводия, ретроплацентарной гема-

томы, хронической внутриутробной гипоксии, задержки роста плода 

(ЗРП) и преждевременных родов описаны многими авторами (Быстриц-

кая Т.С., Бабенко О.П., 2015; Петрова К.К., 2017; Чешик С.Г., Кистенева 

Л.Б., 2016; Aziz N. et al., 2015; Eskild A. et al., 2005; Pereira L. et al., 2014; 

Racicot K., Mor G., 2017; Silasi M. et al., 2015; Turner K.M. et al., 2014). 

Подобная ситуация привела к пересмотру взгляда на ЦМВ инфек-

цию, как на исключительно латентную, не требующую особого внима-

ния, и заставила признать ее роль в развитии различной акушерской и 

перинатальной патологии.  

По нашему мнению, для снижения частоты неблагоприятных яв-

лений у беременных женщин инфицированных ЦМВ необходимо рас-

крытие всех патогенетических звеньев развивающейся патологии. Не-

смотря на значительное число научных публикаций по этой теме, изуча-

емую проблему нельзя считать полностью решенной. На наш взгляд, в 

первую очередь, это касается этиопатогенетической роли ЦМВ в разви-

тии плацентарной недостаточности, практически всегда сопровождаю-

щаяся нарушением гормонального баланса. В данной работе будут по-

казаны не только изменения, происходящие в гормональном фоне, но и 

предпринята попытка раскрыть причины патологических состояний, ас-

социированных с ЦМВ инфекцией.  
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По имеющимся сведениям, в патогенезе осложнений беременно-

сти, определяющими звеньями являются инфекционные заболевания у 

матери и эндокринные нарушения. В монографии отражено текущее по-

нимание процессов, нормальное течение которых обеспечивается проге-

стероном и эстрогенами, а их недостаточность может приводить к пато-

логическому течению беременности. Анализ основных этапов синтеза 

прогестерона и эстрогенов в плаценте поможет раскрыть причины из-

менения их уровней при ЦМВ инфекции.  

Так как предшественником всех стероидных гормонов является 

холестерол, то мы остановили свое внимание на его обмене. Изучив до-

ступную современную литературу, мы не обнаружили исследований хо-

лестеринового метаболизма при беременности, осложненной обостре-

нием ЦМВ инфекции. Особое внимание будет посвящено таким метабо-

литам стероидных гормонов как 5β-дигидропрогестерон, 5β-

прегнандиол, 20α-дигидропрогестерон, 5α-прегнан-3β/α-ол-20-он, де-

гидроэпиандростерон и андростендиол.  

Мы надеемся, что полученные данные окажутся интересными для 

специалистов, работающих в этой области. 
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ПЛАЦЕНТА – БАЗА ДЛЯ ПРЕВРАЩЕНИЯ ХОЛЕСТЕРОЛА  

В СТЕРОИДНЫЕ ГОРМОНЫ 

 

 

 

 

Во время беременности в женском организме появляется важней-

ший провизорный орган, продуцирующий гормоны – плацента. О спо-

собности клеток трофобласта принимать участие в метаболизме стерои-

дов свидетельствуют данные, полученные еще в 60-х – начале 70-х го-

дов XX века (Beck J.S., Ewen S.W., 1970; Grossman S., Bloch E., 1973; Ji-

rasek J.E. et al., 1969; Stemmler H.-J., 1964). Считается, что плацента 

обеспечивает систему «мать-плод» всеми необходимыми для ее разви-

тия гормонами. По некоторым данным, количество стероидных гормо-

нов, производимых плацентой, является существенным уже на пятой 

неделе беременности (Strauss J.F., Martinez F., Kiriakidou M., 1996; Morel 

Y. et al., 2016).  

Стероидогенез в плаценте имеет целый ряд характерных особен-

ностей. Главной из них является то, что плацента представляет собой 

функционально неполный эндокринный орган и не может синтезировать 

стероидные гормоны de novo. В результате ряда работ (Diczflusy E., 

1964; 1969; Diczflusy E., Pion R., Schwers J., 1965; Schwers J., Eriksson G., 

Diczfalusy E., 1965) было установлено, что стероид-продуцирующим ор-

ганом является фетоплацентарный комплекс (рис. 1). Плод, как и пла-

цента, является неполной стероидогенной системой. Однако, ферменты, 

отсутствующие в плаценте, имеются в тканях плода, и наоборот. 

В последние годы накопилось значительное количество знаний в 

области ферментов стероидогенеза (Chatuphonprasert W. et al., 2018). Эн-

зимы, участвующие в синтезе стероидных гормонов, относятся к двум 

семействам: цитохром Р450-ферменты и гидроксистероддегидрогеназы. 

Одно из главных отличий между р450-ферментами и гидроксистеродде-

гидрогеназами – то, что каждый из Р450-ферментов является продуктом 

одного отдельного гена, тогда как для гидроксистероддегидрогеназ си-

туация совершенно иная.  
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Существует несколько изоформ гидроксистероиддегидрогеназ, ко-

торые кодируются своим собственным отдельным геном.  

Разновидности (изоформы) различаются по распределению в тка-

нях, активности катализатора (то есть, функционируют ли они преиму-

щественно как дегидрогеназы или редуктазы), субстратной специфич-

ности, специфичности к кофактору и внутриклеточной локализации 

(Payne A.H., Hales D.B., 2004; Penning T.M., 1997). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 1.  Синтез половых гормонов в системе «плацента-плод». 

 

Что касается изучения ферментов стероидогенеза в плаценте, то 

еще в 60-х годах прошлого века гистохимически была обнаружена ак-

тивность 3, 3, 11, 16 и 17-гидроксистероиддегидрогеназ в тро-

фобласте ворсин плаценты (Чернявская М.А., Сегаль Г.М., Торгов И.В., 

1969; Dey Sudhansu K., Dickmann Z., 1974; Diczflusy E., 1964; 1969; 
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Diczflusy E. et al., 1965; Jirasek J.E., Sulcova J., Capcova A. et al., 1969; 

Lobel B.L., Deane H.W., Romney S.L., 1962; McKay H.D., 1966; Varangot 

J., Cerard L., Jonnotti S., 1965). В настоящее время сохраняется тенден-

ция поиска и описания их изомеров: выделение, очистка, клонирование, 

определение аминокислотной последовательности и структуры. 

Биосинтез стероидных гормонов происходит главным образом на 

микросомах и сводится к реакциям гидроксилирования их стероидных 

предшественников, приводящим к отщеплению алифатических радика-

лов и образованию полярных продуктов, а также к дегидрогеназным ре-

акциям, обеспечивающим превращения гидроксильных и кетогрупп.  

Начало синтеза одинаково для всех стероидных гормонов в пла-

центе. Холестерин содержит 27 атомов углерода, тогда как в состав лю-

бых стероидных гормонов входит не более 21 атома. Поэтому их обра-

зование начинается с отщепления боковой цепи холестерина и форми-

рования ключевого промежуточного продукта синтеза – прегненолона. 

Ход превращения холестерина сложен, он включает ряд последователь-

ных стадий, в которых боковая цепь холестерина гидроксилируется по 

атомам С20 и С22 (с образованием промежуточных оксипроизводных: 

22R-оксихолестерина и 20,22R-диоксихолестерина), а затем расщепля-

ется под действием десмолазы (фермента, относящегося к классу цито-

хром Р450-ферментов). Все три последовательные реакции катализиру-

ются одной и той же молекулой цитохрома Р450scc, то есть реализуется 

полуфункциональный катализ, предусматривающий высокую динамич-

ность в области активного центра в процессе превращения исходного 

субстрата и промежуточных продуктов его окисления. В случае цито-

хрома Р450scc считается, что строгая последовательность реакций гид-

роксилирования обеспечивается термодинамическим механизмом ста-

билизации оксистероидов в активном центре гемопротеида: сродство 

оксипроизводных холестерина к цитохрому Р450scc значительно выше, 

чем исходных соединений.  

Цитохром Р450-ферменты (CYP) – это мебраносвязанные белки, 

расположенные либо в митохондриальной мембране, к ним относятся 

CYP11A, CYP11B1, CYP11B2 (названия даны в соответствии с кодиру-

ющим их геном), или эндоплазматическом ретикулуме (микросомаль-

ные) – CYP17, CYP19, CYP21. В биосинтезе они катализируют гидрок-

силирование и расщепление стероидного субстрата. Эти энзимы функ-
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ционируют как монооксигеназы, использующие НАДФН в качестве до-

нора электронов (Payne A.H., Hales D.B., 2004). Цитохром Р-450 являет-

ся местом связывания стероидного субстрата в гидроксилирующей це-

пи. Во всех реакциях участвует локализованная на внутренней мембране 

многокомпонентная система, содержащая кроме цитохрома Р450 флаво-

протеид и ферредоксин (Усанов С.А., Черноголов А.А., Хонкакоски П. и 

др., 1990). 

К классу цитохром Р450-ферментов, участвующих в стероидогене-

зе половых гормонов, относится Р450scc (CYP11A). Энзим катализирует 

первую реакцию на пути синтеза всех стероидных гормонов, являющу-

юся также скорость лимитирующей. Следовательно, регуляция стерои-

догенеза происходит в основном на данной стадии.  

В реакции участвуют три молекулы НАДФН, три молекулы кис-

лорода и митохондриальная система переноса электронов. Фермент 

Р450scc (от английского – side chain cleavage enzyme, фермент, отщеп-

ляющий боковую цепь) является продуктом одного отдельного гена, он 

катализирует три последовательных реакции гидроксилирования по 20 и 

22 углеродным атомам и отщепление боковой углеродной цепи. Этот 

энзим наиболее выражен в коре надпочечников, яичнике, яичке и пла-

центе, кроме того он обнаружен в сердце, центральной и перифериче-

ской нервной системе. В плаценте фермент локализуется в синцитио-

трофобласте (Li Y., Isomaa V., Pulkka A. et al., 2004; Payne A.H., Hales 

D.B., 2004). Существует мнение о том, что плацентарный ядерный белок 

SCC1, через активацию белка АР-2, осуществляет регуляцию активно-

сти фермента цитохром P450scc в плаценте человека (Ben-Zimra M., 

2002; Payne A.H., Hales D.B., 2004). 

Вне беременности активность энзима регулируется двумя меха-

низмами. Быстрая регуляция в ответ на стимул (процесс стимулируется 

адренокортикотропным гормоном) осуществляется путем синтеза спе-

циального белка StAR (steroidogenic acute regulator), функцией которого 

является доставка холестерола к месту его преобразования. Процесс 

опосредуется системой цАМФ – протеинкиназа А. Еще одним регулято-

ром, воздействующим на синтез стероидных гормонов, является отрица-

тельная обратная регуляция активности фермента 3-гидрокси-3-

метилглутарил-КоА-редуктазы холестеролом (Дедов И.И., Мельниченко 

Г.А., Фадеев В.В., 2000; Alphonse P.A., Jones P.J., 2016). 



________________________  Глава I  ________________________ 

10 

 

В плаценте превращение холестерола в прегненолон также являет-

ся лимитирующей стадией биосинтеза стероидных гормонов. Стимуля-

ция активности происходит при участии цАМФ, лютеинизирующего 

гормона и хорионического гонадотропина. Как оказалось, адренокорти-

котропный гормон, осуществляющий контроль этой стадии синтеза сте-

роидных гормонов, в плаценте не работает (Payne A.H., Hales D.B., 2004; 

Strauss J.F. et al., 1996). Фосфолипиды выступают в качестве низкоспи-

новых эффектов холестерин-гидроксилирующего цитохрома Р450 и иг-

рают принципиально важную роль в процессе превращения холестерола 

в прегненолон. 

 

Синтез прогестерона 

 

Прогестерон синтезируется (рис. 2) из прегненолона в две стадии 

(Tuckey R. С., 2005; Fraichard C. et al., 2020).  

 

            холестерин                     прегненолон                    прогестерон 

 

Рис 2. Синтез прогестерона. 

 

В молекуле прегненолона 3-гидроксигруппа окисляется в 3-

оксогруппу, а двойная связь изомеризуется. Выполняет эту работу один 

фермент 3β-гидроксистероиддегидро-геназа I типа (рис. 3). 

В течение последнего времени было выделено и охарактеризовано 

несколько ее изоформ. На сегодняшний день их известно шесть, каждая 

из которых является продуктом одного отдельного гена (Payne A.H., 

Hales D.B., 2004). Свои номера они получали в порядке их обнаружения.  

Фермент широко распространен в стероидогенных тканях и хоро-

шо выражен в плаценте человека. Регуляция его работы в плаценте от-

личается от таковой в других тканях, исследования в этой области про-

должаются до сих пор.  
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Рис. 3. Синтез гормонов из холестерина (Brandt M., 2003). 

 

Вначале этот фермент работает как дегидрогеназа и окисляет гид-

роксил у 3-го углеродного атома до 3-кетогруппы. Затем он работает как 

изомераза и катализирует перенос двойной связи из 5-6-го положения в 

4-5-е положение, который сопровождается внутри- или межмолекуляр-

ным переносом водорода от С4 к С6. Ранее считалось, что в данной ситу-
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ации работают два фермента (Юдаев Н.А., 1976; Murota S., Fenselau 

C.C., Talalay P., 1971). Но позднее было установлено, что обе реакции 

осуществляются 3β-гидроксистероиддегидрогеназой (Payne A.H., Hales 

D.B., 2004; Thomas J.L., Duax W.L., Addlagatta A.et al., 2003) 

Стимулируется данный процесс хорионическим гонадотропином и 

хорионическим адренокортикотропином посредством активации цАМФ 

(Chaudhary J., Bhattacharyya S., Das C., 1992; Mason J.I., Ushijima K., Doody 

K.M.  et al., 1993; Tremblay Y. Beaudoin C., 1993; Tuckey R.С., 2005).  

В литературе имеются данные о регулировании ферментов 

P450scc и 3β-гидроксистероиддегидрогеназы I типа по принципу обрат-

ной связи прогестероном и эстрадиолом (Beaudoin C., Blomquist C.H., 

Bonenfant M. et al., 1997; Strauss J.F., Martinez F., Kiriakidou M., 1996). 

Ингибирование стероидогенеза на этой стадии может осуществляться и 

неконьюгированными предшественниками стероидов (Townsley J. D., 

1975). 

В перфузате плаценты обнаружено большое количество прогесте-

рона. Установлено, что в конце беременности данный орган продуциру-

ет около 300 мг прогестерона в день, что в десять раз превышает коли-

чество гормона, секретируемого во время полового цикла (Strauss J.F., 

Martinez F., Kiriakidou M., 1996). Основная функция прогестерона – это 

торможение сократительной функции миометрия и преобразование эн-

дометрия.  

Метаболизм прогестерона происходит по типу, характерному для 

других Δ4-3-кетостероидов. Основным его путем является восстановле-

ние кольца А; другим ведущим превращением является восстановление 

боковой цепи в 20-м положении (Steckelbroeck S., Jin Y., Gopishetty B. et 

al., 2004). 

Фермент 20α-гидроксистероддегидрогеназа катализирует превра-

щение прогестерона в его неактивную форму – 20α-дигидро-

прогестерон (Jayasekara W.S.N., Yonezawa T., Ishida M. et al., 2005).  

Один из последних выводов, существующий на правах гипотезы, 

сделанный в результате исследования этого энзима, заключается в том, 

что в плаценте 20α-гидроксистероддегидрогеназа защищает плод от ци-

тотоксического действия высокого содержания прогестерона и, таким 

образом, поддерживает нормальное развитие плода.  

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Mason%20JI%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Ushijima%20K%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Doody%20KM%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Doody%20KM%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
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Фермент 20α-гидроксистероддегидрогеназа (HSD) считают одной 

из изоформ 3α-гидроксистероддегидрогеназ, которые вовлечены в мета-

болизм всех классов стероидных гормонов (Penning T.M. et al., 2000; 

Steckelbroeck S., 2004). Они катализируют превращение 5α-андростан-

17β-ол-3-ол (дигидротестостерона) в 5 α-андростан-3α,17β-диол (андро-

стандиол), эстрона в 17β-эстрадиол, а также участвуют в прогестероно-

вом метаболизме, где преобразуют гидроксильные группы стероида. По 

современной терминологии 3α-гидроксистероддегидрогеназы принад-

лежат к семейству альдокеторедуктаз (AKR1C1-AKR1C4) (Zeng C.M. 

al., 2017). 

 

Синтез эстрогенов 

 

В организме биосинтез эстрогенов на стадии прегненолона может 

проходить по двум путям: Δ4-путь (данный путь преобладает в яични-

ках) – через прогестерон, 17α-оксипрогестерон и андростендион и Δ5-

путь (рис. 4) через 17-оксипрегненолон, дегидроэпиандростерон, Δ5-

андростендиол и/или тестостерон (осуществляется преимущественно в 

фетоплацентарном комплексе и надпочечниках).  

 

 

 

 

 

 

 

 

 

 

 

Рис. 4. Синтез эстрогенов. 

 

В этих реакциях участвует целый ряд ферментов: цитохром 

Р450с17, сульфокиназы, сульфатазы Δ5-стероидов, 3β-

гидроксистероиддегидро-геназа, цитохром Р450-ароматазы, 17β-
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гидроксистероиддегидрогеназы I типа (Strauss J.F., Martinez F., Kiriaki-

dou M., 1996). 

Существовало мнение, что образование из прегненолона и проге-

стерона С19-стероидов происходит практически только в тканях плода 

(Pion R., Jaffe R., Eriksson G. et al., 1965; Varangot J., Cerard L., Jonnotti 

S., 1965). Как прогестерон, так и прегненолон гидроксилируются пло-

дом в 17α-положении. Однако отщепление боковой цепи у 17α-

оксипрогестерона происходит в минимальном объеме, и он использует-

ся главным образом для синтеза С21-кортикостероидов в надпочечниках 

плода. В то же время для Δ5-стероидов существует свой путь синтеза.  

Первоначально считалось, что каждая реакция проводится разны-

ми ферментами (Юдаев Н.А. и др., 1976), однако более поздние иссле-

дования (Nakajin S., Hall P.F., 1981; Nakajin S., Shively J.E., Yuan P.M. et 

al., 1981) показали, что один единственный белок катализирует и гид-

роксилирование и лиазную реакцию, в последующем это было подтвер-

ждено.  

Фермент Р450с17 (CYP17) – представитель класса цитохромных 

энзимов является продуктом одного гена. Он катализирует две оксидо-

редуктазные реакции при посредстве цитохром Р450, НАДФН, кислоро-

да и микросомальной системы переноса электронов, в результате чего из 

17-оксипрегненолона образуются промежуточные соединения – дегид-

роэпиандростерон (ДЭА) (или в других органах андростендион) – в ко-

личественном отношении наиболее важный стероид плода. Как мы уже 

упомянули, существовало мнение, что энзим хорошо выражен во всех 

классических стероидогенных тканях, кроме плаценты человека, хотя в 

плацентах некоторых других видов млекопитающих он был обнаружен. 

В 2003 году было сообщено об обнаружении экспрессии гена CYP17 в 

плаценте (Pezzi V., 2003). Кроме того, позднее была подтверждена не 

только экспрессия гена, но и активность фермента в плаценте (Escobar 

J.C., 2011б; Noyola-Martinez N., 2017). В синцитиотрофобласте ворсин 

плаценты мРНК CYP17A1 экспрессируется на гораздо более низком 

уровне по сравнению с другими ферментами, участвующими в синтезе. 

По мнению авторов не более 20-30 % эстрогенов, вырабатываемых во 

время беременности, могут быть результатом конверсии прегненолона 

плацентарным ферментом CYP17A1. Большинство исследователей счи-
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тают, что данная стадия образования С19-стероидов происходит в ос-

новном в тканях плода. Синтез 17α-гидроксипрегненолона в трофобла-

сте регулируется сигнальным путем цАМФ/протеинкиназа А (Escobar 

J.C. et al., 2011а).   

Дегидроэпиандростерон не только служит предшественником эст-

рогенов, но и выполняет самостоятельные физиологические функции. 

Основное физиологическое действие ДЭА связано с регуляцией различ-

ных звеньев репродуктивной системы и участием в процессе дифферен-

цировки структур мозга. В эмбриональном периоде этот стероид являет-

ся и фактором половой дифференцировки. На практике анализ данного 

соединения принято вести по его метаболиту – дегидроэпиандростерон-

сульфату, имеющего более высокую стабильность, более длительный 

период полураспада и более высокую концентрацию в крови (Klinge 

C.M. et al.,2018; Clark B.J. et al., 2018).  

Образующийся дегидроэпиандростерон не используется в каче-

стве субстрата 3β-оксистероиддегидрогеназой плода, но под действием 

высокоактивной сульфокиназы превращается в сульфоформу. Суще-

ствует предположение, что синтез сульфата в надпочечниках плода про-

исходит на уровне сульфатов уже на стадии прегненолона. Сульфатаз-

ная активность в тканях плода очень низка, однако она весьма значи-

тельна в плаценте, особенно по отношению к сульфатам Δ5-стероидов 

(Ugele B., St-Pierre M.V., Pihusch M. et al., 2003). В результате большое 

количество дегидроэпиандростерон-сульфата, образующегося в тканях 

плода, быстро гидролизуется плацентой. Образующийся дегидроэпиан-

дростерон превращается плацентой в анростендион (рис. 5), и основная 

масса последнего быстро ароматизируется в эстрон и эстрадиол. 

 

 

дегидроэпиандростерон      5-андростен-3,17-дион          андростендион 

 

Рис 5. Синтез андрогенов. 
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Одной из характерных черт ферментного набора плаценты являет-

ся отсутствие в ней 16α-гидроксилазы. В результате плацента может, 

ароматизируя андростендион, образовывать лишь эстрон и эстрадиол, 

но не эстриол. Синтез последнего осуществляется при участии печени 

плода. Хорошо известно, однако, что именно эстриол является домини-

рующим эстрогеном беременности у женщин. Уровень его в крови при 

беременности возрастает в 5-10 раз по сравнению с небеременными. 

Эстриол, нейтрализуя действие эстрона и эстрадиола, снижает сократи-

тельную способность матки. Он же и является наиболее активным про-

тектором роста матки. Выдвигалась гипотеза об антиоксидантной функ-

ции эстриола на уровне развивающейся центральной нервной системы 

плода (Reves-Romero M.A., 2001). Опыты с различными предшествен-

никами показали, что эстриол может образовываться только в результа-

те ароматизации 16-окисленных нейтральных предшественников плода 

и (или) матери. Основными предшественниками при образовании эст-

риола являются 16α, 17-диоксисоединения: Δ5-андростентриол, 16-кето-

Δ5-андростендиол и 16α-оксидегидроэпиандростерон. У плода местом 

16-гидроксилирования является в основном печень.  

Таким образом, значительная часть дегидроэпиандростерона, об-

разующегося в надпочечниках плода, подвергается 16α-

гидроксилированию в печени и затем ароматизируется в плаценте с об-

разованием эстриола (Kovács K. et al., 2019).  

Около 80 % эстриола во время беременности синтезируется из де-

гидроэпиандростерона-сульфата плодового происхождения и только 10 

% – из дегидроэпиандростерон-сульфата, образующегося в коре надпо-

чечников матери (Kallen C.B., 2004; Pasqualini J.R. et al., 2016). Дегидро-

эпиандростерон сульфат превращается в эстриол двумя путями. Основ-

ной путь включает 16α-гидроксилирование секретируемого фетальными 

надпочечниками дегидроэпиандростерон-сульфата в печени плода. Об-

разовавшийся 16α-гидроксидегидроэпиандростерон сульфат в плаценте 

десульфатируется и под воздействием 3β-гидроксистероиддегидро-

геназно-изомеразной системы трансформируется в 16α-гидроксиандро-

стендион, затем в 16α-гидрокситестостерон. Ароматизация последнего 

приводит к образованию эстриола (Pasqualini J.R., 2005; Noyola-Martínez 

N. et al., 2019). Наряду с 16α-гидроксилированными производными де-
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гидроэпиандростерон-сульфата в печени плода образуется Δ5-

андростентриол, который, поступая в плаценту, превращается в эстриол 

(Pasqualini J.R., 1970). Кроме «нейтрального» пути, биосинтез эстриола 

при беременности осуществляется 16α-гидроксилированием (феноль-

ный тип) в печени плода и матери плацентарного эстрона, который, по-

ступая обратно в плаценту, превращается в эстриол. У небеременной 

женщины синтез эстриола происходит в печени путем преобразования 

первичных эстрогенов – 17β-эстрадиола и эстрона (Цирельников Н.И., 

1980). 

Заключительным и уникальным этапом синтеза эстрогенов являет-

ся ароматизация С19-стероидов. Эта реакция катализируется целым фер-

ментным комплексом. Результаты опытов по сравнению перехода в эст-

рогены различных производных андростендиона позволили предполо-

жить, что промежуточным этапом при ароматизации нейтральных сте-

роидов является гидроксилирование в 19-м положении. 19-

гидроксилирование является лимитирующей реакцией всего процесса 

ароматизации. Для каждой из трех последовательных реакций смешан-

ного типа (образование 19-оксиандростендиона, 19-кетоандростендиона 

и эстрона) требуется НАДФН и О2. В опытах на плаценте человека об-

наружено, что для превращения 1М андростендиона в 1М эстрона тре-

буется 3М НАДФН и 3М О2. Ключевым ферментом биосинтеза эстроге-

нов является цитохром Р450-ароматаза, катализирующая процессы, при-

водящие к ароматизации первого кольца стероидного ядра, и, следова-

тельно, дающая начало эстрогенам – эстрону, эстрадиолу и эстриолу. 

Реакция включает микросомальную систему переноса электронов, цито-

хром Р450 редуктазу, три молекулы НАДФН и три молекулы кислорода. 

Р450-ароматаза широко распространена в тканях и очень хорошо выра-

жена в плаценте человека (Ясинская И.М., Сумбаев В.В., 2006; Korze-

kwa K.R., Trager W.F., Smith S.J. et al., 1991; Li Y. et al., 2004; Payne A.H., 

Hales D.B., 2004). 

Регуляция деятельности цитохром Р450-ферментов в плаценте от-

личается от регуляции этих энзимов в других органах (Ясинская И.М., 

Сумбаев В.В., 2006; Dickey R., Thompson J., 1969; Payne A.H., Hales 

D.B., 2004; Sofi M., Young M.J., Papamakarios T. et al., 2003). Поиск и 

идентификация факторов, отвечающих за их активность, велись долго и 
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продолжаются до сих пор. Существует мнение, что работа фермента ци-

тохром Р450-ароматазы находится под контролем специфического пла-

центарного exon 1 (Kamat A., 2002). Выявлено, что адреноксин является 

ингибитором для цитохром Р450scc (Tuckey R.C., McKinley A.J., 2001). 

Плацентарный цитохром Р450 в комплексе с андростендионом 

полностью нечувствителен к СО, но обнаруживает значительную чув-

ствительность к окиси углерода с 19-нортестостероном (Ясинская И.М., 

Сумбаев В.В., 2006). Другие эстрогены образуются главным образом 

путем гидроксилирования или дегидрирования эстрадиола, поэтому 

ароматазу можно считать единственным ферментом, лимитирующим 

образование эстрогенов (Ясинская И.М., Сумбаев В.В., 2006; Korzekwa 

K.R., Trager W.F., Smith S.J. et al., 1991). 

После синтеза эстрон и эстрадиол могут быть катаболизированы в 

эстриол, эстетрол, катехолэстрогены (или метоксиэстрогены) и конъ-

югированные формы. Эстетрол является продуктом 15α/16α-

гидроксилирования эстрадиола, происходящего в печени плода. В ре-

зультате его концентрация намного выше у плода, чем у матери. Фер-

мент 15α-гидроксилаза специфичен для печени плода, он не экспресси-

руется после рождения и, следовательно, эстетрол больше не синтезиру-

ется (Berkane N. et al., 2017). Роль этого конкретного эстрогена остается 

неизвестной, вероятно, он действует как селективный модулятор рецеп-

тора эстрогена (Abot A. et al., 2014; Pluchino N. et al., 2014; Coelingh 

Bennink H.J.T. et al., 2016).  

Катехолэстрогены образуются в результате необратимого гидрок-

силирования эстрона и эстрадиола, катализируемого изоформами цито-

хрома P450 в плаценте и печени. В плаценте гидроксилирование проис-

ходит в основном за счет активности CYP1A1 и CYP3A4 (Lee A.J. et al., 

2003). В результате реакции формируются активные метаболиты с ге-

номным и негеномным действием (Berkane N. et al., 2017). Катехолэст-

рогены превращаются плацентарной катехол-O-метилтрансферазой 

(СОМТ) в метоксиэстрогены. Одним из основных метоксиэстрогенов 

является 2-метоксиэстрадиол (2-ME2), который вырабатывается плацен-

той, а также локально в месте имплантации (Berkane N. et al., 2017). 

Метаболизм эстрогеновых стероидов существенно отличается от 

других стероидных гормонов. Если основные превращения нейтральных 
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стероидов (кортикостероиды, андрогены, прогестерон) заключаются в 

восстановлении кольца А, то характерной особенностью обмена эстро-

генов является сохранение у преобладающей массы их метаболитов 

ароматического кольца А. Первым этапом метаболизма эстрадиола, по-

видимому, является его превращение в эстрон, катализируемое 

НАД(НАДФ)-зависимой 17β-гидроксистероиддегидрогеназой (Dupont 

E., Labrie F., Luu-The V. et al., 1991; Luu-The V., 2001).  

Гидроксистероиддегидрогеназы, участвующие в стероидогенезе 

принадлежат к семейству алкогольдегидрогеназ. Они являются мем-

браносвязанными (митохондриальными или микросомальными) фер-

ментами, использующими НАД/НАДФ в качестве акцепторов.  

У человека 17β-гидроксистероиддегидрогеназа катализирует пре-

вращения эстрона, 17β-эстрадиола, андростендиона (4-ен-дион), тесто-

стерона, а также дегидроэпиандростерона и андрост-5-ен-3β, 17β-диола. 

Таким образом, данный фермент играет важную роль в формировании 

андрогенов и эстрогенов.  

Долгое время были известны две изоформы, катализирующие вза-

имопревращение у высокоактивных 17β-гидроксистероидов и их 17-

кетоформ, тем самым, регулируя биологическую активность половых 

стероидов. Первой была охарактеризована и клонирована изоформа 1 

этого энзима, которая преимущественно катализирует преобразование 

эстрона в 17β-эстрадиол (впервые она была выявлена именно при иссле-

довании плаценты), тогда как изоформа 2, наоборот, – конверсию эстра-

диола в эстрон. По мере продвижения исследований оказалось, что фер-

мент обнаруживает удивительную мультифункциональность, позволя-

ющую контролировать концентрацию не только стероидов, но и также 

жирных и желчных кислот (Mindnich R.et al., 2004). Были выявлены раз-

личные типы 17β-гидроксистероиддегидрогеназы, все они играют важ-

ную роль в метаболизме эстрогенов и андрогенов (Blanchard P.-G., 2007; 

Deluca D.et al., 2005; Jacobsson J. et al., 2006; Husen B. et al., 2003; Labrie 

F., 1997; Li Y.et al., 2004; Liu H.et al., 2005; Lin S.-X. et al., 2006; Miet-

tinen M.M., 2007; Mindnich R. et al., 2004; Moeller G. et al., 2006; Moghra-

bi N., Andersson S., 1989; Su E.J. et al., 2007; Vihko P., 2004). Ключевым 

лидером в изучении типов 17β-гидроксистероиддегидрогеназы в миро-

вой науке считается Van Luu-The (Luu-The V., 2001; Luu-The V., Trem-

blay P., Labrie F., 2006; Luu-The V., Zhang Y., Poirier D. et al., 1995).  
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17β-гидроксистероиддегидрогеназы различаются по распределе-

нию в тканях, каталитическим предпочтениям, субстратной специфич-

ности, субклеточной локализации и механизмам регулирования. Изо-

формы, катализирующие однонаправленную реакцию восстановления, 

обозначены цифрами 1, 3, 5 и 7, катализирующие обратную реакцию 

(окислительную) – 2, 4, 6 и 8. Только три формы этого энзима участву-

ют в катализе финального шага биосинтеза гормонов – 1, 3 и 7. Недавно 

введенная номенклатура для 17β-гидроксистероиддегидрогеназ основа-

на на генетическом тождестве и их функциональном значении. Кроме 

того, 17β-гидроксистероиддегидрогеназы номеровались хронологиче-

ски, в порядке их обнаружения (Peltoketo H.et al., 1999; Lin S.-X., 2005). 

В 2006 году стало известно о 14-м типе этого энзима (Jansson A.K., Gun-

narsson C., Cohen M. et al., 2006). Сегодня у млекопитающих обнаружено 

15 ферментов 17β-HSD (He W., 2016). Все выявленные типы фермента 

активно изучаются. 

Тип 5 17β-гидроксистероиддегидрогеназы, отвечает за трансфор-

мацию 4 андростендион (4-дион) в тестостерон. Кроме того, оказалось, 

что в яичнике он обладает высокой 20α-гидроксистероиддегидро-

геназной активностью. Предполагается, что это необходимо для того, 

чтобы защитить клетки теки от высокой концентрации прогестерона. 

Такая двойная активность этого типа фермента в женских репродуктив-

ных органах, вероятно, необходима для оптимизации гормонального ба-

ланса (Jacobsson J., Palonek E., Lorentzon M. et al., 2006). 

В 2003 году была выявлена новая 17-гидроксистероиддегидро-

геназа, получившая наименование 12 тип 17β-гидроксистероиддегидро-

геназы. Обнаружено, что этот тип фермента трансформирует эстрон в 

эстрадиол. Что интересно, последовательность этого типа сходна с по-

следовательностью 17β-гидроксистероиддегидрогеназы 3 типа и они ко-

дируются одним геном (Blanchard P.-G., Luu-The V., 2007; Luu-The V., 

Tremblay P., Labrie F., 2006). Однако, несмотря на это, эти типы катали-

зируют разные реакции с разными субстратами (3-й тип 17β-

гидроксистероиддегидрогеназы отвечает за преобразование тестостеро-

на в андростендион). Далее были  исследованы 13 и 14 типы фермента 

(Horiguchi Y. et al., 2008; Jansson A.K. et al., 2006; Sivik T. et al., 2012). 

В плаценте идентифицированы 1, 2, 7, 11, 12 типы данного фер-

мента (Peltoketo et al., 1999; Chai Z., 2003). Одной из последних была 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Horiguchi%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=18359291
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jansson%20AK%5BAuthor%5D&cauthor=true&cauthor_uid=17145895
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sivik%20T%5BAuthor%5D&cauthor=true&cauthor_uid=22792371


________________________  Глава I  ________________________ 

21 

 

описана изоформа 11, в достаточно сильной степени выраженная в син-

цитиотрофобласте и катализирующая превращение 5α-андростан-3α, 

17β-диола в андростерон. Этот субстрат привлекается для поддержания 

нормального течения беременности и модуляции активности рецепторов 

к γ-аминобутиратной кислоте. Пришли к заключению, что он играет 

свою роль и в стероидогенезе андрогенов и в метаболизме нестероидо-

генных тканей. Он может действовать метаболизируя компоненты, ко-

торые стимулируют стероидный синтез и/или генерируя метаболиты, 

которые его ингибируют (Chai Z., Brereton P., Suzuki T. et al., 2003).  

Считается, что многообразие изоформ 17β-гидроксистероид-

дегидрогеназы составляет сложную систему, гарантирующую опреде-

ленную адаптацию в клетках и регулирование уровней половых стеро-

идных гормонов. Широкая и накладывающаяся субстратная специфич-

ность предполагает взаимодействие 17β-гидроксистероиддегидрогеназ с 

другими метаболическими путями. 

Проводились исследования, касающиеся регуляции работы данно-

го энзима. Среди факторов, оказывающих влияние на 17β-гидрокси-

стероиддегидрогеназы у человека отмечены плацентарный белок JEG-3 

клетки, белки АP2, Sp1, Sp3, GATA-элемент, ретинойная кислота, эпи-

дермальный фактор роста, протеинкиназа А. Было выявлено, что эстро-

гены ингибируют активность ряда типов 17β-гидрокси-

стероиддегидрогеназы (Deluca D., Moller G., Rosinus A. et al., 2006), а 

другие – 7 типа, наоборот, активируются ими. Известно сообщение о 

снижении интенсивности данного фермента под действием цАМФ, за-

пускаемого FSH-белком. В основном же, в настоящее время проводится 

изучение регуляции фермента на геномном уровне (Keller B., Ohnesorg 

T., Mindnich R. et al., 2006; Ohnesorg T., Keller B., Hrabé de Angelis M. et 

al., 2006; Luu-The V., Zhang Y., Porier D. et al., 1995; Luu-The V., 2001).  

При изучении 17β-гидроксистероиддегидрогеназы 7 типа, был 

сделан вывод, что данный энзим участвует не только в превращении 

эстрадиола, но и играет другую, возможно более важную роль, действу-

ет как 3-кетостероид редуктаза в холестериногенезе (Breitling R., 

Krazeisen A., Möller G. et al., 2001; Liu H., Robert A., Luu-The V., 2005). 

Некоторые исследователи (Drolet R., Simard M., Plante J. et al., 

2007), изучая 17β-гидроксистероиддегидрогеназы (изоформа 2) в пла-
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центе пришли к выводу, что этот фермент действует как барьер, умень-

шающий уровень эстрадиола для нормализации его уровня в плодовой 

циркуляции. Проводится несколько исследований, в которых изучаются 

элементы регуляции работы гидроксистероиддегидрогеназ. Одним из 

факторов, регулирующих работу этих энзимов, считается достаточная 

концентрация кофактора – НАДФ/НАД (Agarwal A. K., Auchus R. J., 

2005).  

Во время беременности экспрессия и активность ферментов, 

участвующих в образовании стероидных гормонов регулируется раз-

личными факторами. Некоторые из них модифицируют как экспрессию 

стероидогенных ферментов, так и гормональную продукцию в плаценте. 

Регуляция экспрессии генов большинства этих ферментов зависит от 

быстрых ответов, опосредованных вторичными мессенджерами, такими 

как цАМФ (Moore C.C. et al., 1992; Tremblay Y. et al., 1993; Escobar J.C. 

et al., 2011а). Очень подробно регуляция работы стероидогенных фер-

ментов рассмотрена в обзоре N. Noyola-Martínez и соавторов (Noyola-

Martínez N. et al., 2019). 
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ГОРМОНАЛЬНЫЕ ОТНОШЕНИЯ В СИСТЕМЕ  

«МАТЬ-ПЛАЦЕНТА-ПЛОД» ПРИ ФИЗИОЛОГИЧЕСКОЙ И 

ОСЛОЖНЕННОЙ ЦИТОМЕГАЛОВИРУСНОЙ  

ИНФЕКЦИЕЙ БЕРЕМЕННОСТИ 

 

 

 

 

 

Прогестерон и его рецепция в репродуктивных  

органах женщины  

 

Прогестерон имеет большое значение в физиологии (Scarpin K.M. 

et al., 2009). Гормон является важнейшим регулятором нормальной ре-

продуктивной функции человека в матке, яичниках, молочных железах 

и мозге, а также в нерепродуктивных тканях, таких как кардиоваскуляр-

ная, костная, центральная нервная, иммунная и метаболические (обмен 

воды, электролитов, липидов, углеводов, белков, в том числе компонен-

тов гемостаза и фибринолиза) системы. 

Разнообразное действие прогестерона реализуется через его ре-

цепторы (PR). Для этого обязательным является присутствие С3-кето-

группы и двойной связи между С4 и С5 углеродными атомами кольца А. 

В клетках тканей-мишеней имеются участки связывания на плазматиче-

ской мембране и внутри клетки (цитозоль/ядро), которые опосредуют 

быстрые и медленные специфические биологические эффекты гестаге-

нов.  

Внутриклеточные рецепторы прогестерона относятся к суперсе-

мейству лигандактивируемых транскрипционных факторов. Существует 

две основные изоформы PR: PR-А (94кД) и PR-В (120кД). Обе изофор-

мы кодируются одним геном, но возникают в результате действия раз-

ных областей, определяющих инициацию транскрипции. Использование 

того или иного промотора тканеспецифично и дополнительно контролиру-

ется эндокринными и паракринными факторами (Flototto T. et al., 2004; 

Petz L.N. et al., 2004; Madsen G. et al., 2004).  
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Рецепторы различаются наличием на N-конце PR-В фрагмента из 

164 аминокислотных остатков. Обе формы имеют одинаковые лиганд- и 

ДНК-связывающие активности, но разную транскрипционную актив-

ность. Кроме того, существуют данные, что два рецептора имеют различ-

ную конформацию внутри клетки и взаимодействуют с разными корегу-

ляторами (Scarpin K.M., 2009). Они различаются по спектру индуцируе-

мых прогестероном ответов в одной и той же клетке, PR-А может инги-

бировать действие гормона через PR-В. В экспериментах было показано, 

что для подготовки беременности и ее поддержания требуется PR-А, а 

для развития молочных желез необходима экспрессия PR-В (Mulac-

Jericevic B., Conneely O.M., 2004; Conneely O.M., Mulac-Jericevic B., 

Lydon J.P., 2003). У человека идентифицирован PR-С, который увеличи-

вает транскрипционную активность PR-А и PR-В (Wei L.L., 1996). 

Помимо медленно развивающихся геномных эффектов, за которые 

ответственны классические подтипы PR, прогестерон может индуциро-

вать быстрые ответы клеток. К ним относят индукцию созревания ово-

цитов и активацию Src/Ras/MAPK (mitogen-activated protein kinases) сиг-

нального пути в клетках (Leonhardt S.A. et al., 2003). Быстрые эффекты 

прогестерона не могут реализоваться через геномные механизмы, так 

как образование мРНК и соответствующих белков требует определенно-

го времени. Негеномные (быстрые) эффекты, происходящие в течение 

нескольких секунд, реализуются через активацию внутриклеточных пу-

тей – изменения ионного выброса и концентрации внутриклеточного 

свободного кальция. Эффекты, совершающиеся через несколько минут, 

происходят через активацию других вторичных мессенджеров, таких 

как, циклические нуклеотиды и киназы – ERK (extracellular signal-

regulated kinases) 1 и 2 типа (Stjernholm Y.V., 2012). Для них существуют 

плазмомембранные рецепторы, связанными с G-белком (мембранные 

рецепторы прогестерона: mPR), и так называемыми мембранными ком-

понентами PR (PGRMC) (Shah N.M. et al., 2019). В настоящее время 

идентифицировано несколько PR плазматических мембран, действую-

щих, в основном, через активацию системы вторичных мессенджеров 

(Boonyaratnakonkit V. et al., 2007).  

По распределению в тканях и экспрессии в репродуктивном цикле 

подразделяют три типа мембранных PR: α, β, γ. В репродуктивных орга-
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нах, таких как яичники и плацента, представлены mPR-α (Thomas P. et 

al., 2007). При контакте мембранного PR с гормоном диссоциируется 

ингибиторный G-белок, одна из субъединиц которого связывается с 

аденилатциклазой и активность ее снижается, в результате чего уровень 

цАМФ падает (Karteris E. et al., 2006; Dosiou C. et al., 2008).  

Прогестероновый мембранный рецепторный компонент 1 имеет 

широкий спектр физиологической активности – регуляция синтеза и ка-

таболизма стероидов, содержания холестерина, эндоцитоза и репродук-

тивного поведения (Thomas P., 2008). С этим рецептором связано антиа-

поптотическое действие прогестерона на клетки гранулезы и желтого 

тела (Peluso J.J. et al., 2010). Прогестероновый мембранный рецептор-

ный компонент 1 экспрессируется преимущественно в печени и почках, 

прогестероновый мембранный рецепторный компонент 2 – в плаценте. 

Механизм действия данных рецепторов находится в стадии изучения, 

показано участие цГМФ-зависимых протеинкиназ и протеинкиназы С 

(Engmann L. et al., 2006; Peluso J.J., 2006). 

Считается, что специфичность гормонального действия формиру-

ется в значительной мере на уровне корегуляторов. К ним относятся ко-

активаторы и корепрессоры, представляющие большую группу белков с 

различными механизмами действия (Li X. et al., 2003). Одним из меха-

низмов канализации разных гормональных стимулов служит предпочти-

тельность взаимодействия рецепторов с теми или иными корегулятора-

ми. Ряд корегуляторов экспрессируется тканеспецифично, что также 

служит основой уникальности спектра действия гормонов. Иными сло-

вами, в зависимости от набора PR и их корегуляторов в разных тканях и 

разновидностях клеток прогестерон может иметь различное действие. 

Активность корегуляторов может контролироваться рядом факторов, 

например, путем фосфорилирования (Ko L., Cardona G.R., Henrion-

Caude A. et al., 2002). 

Центральное место в поддержании прогестероннового рецептора в 

состоянии готовности к связыванию с лигандом занимает белок тепло-

вого шока 90 (Hsp90). Важную роль в функционировании Hsp90 играют 

связывание АТФ и АТФазная функция (Obermann W.M. et al., 1998). 

Связывание прогестерона с PR приводит к конформационным из-

менениям их структуры. Рецепторные димеры связываются со специфи-
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ческими гормончувствительными элементами ДНК, отвечающими за 

конечный биологический ответ на воздействие гестагенов. Прогестерон 

специфически регулирует экспрессию 94 генов. 

Геномные эффекты прогестерона опосредуются не только PR, но и 

внутриклеточными рецепторами глюкокортикоидов. В настоящее время 

показано, что основные особенности индуцированных прогестероном 

иммунных реакций матери опосредованы через глюкокортикоидные ре-

цепторы (Hierweger A.M. et al., 2019; Solano M.E. et al., 2020). В более 

ранних работах имеются сведения, отражающие связь между угрозой 

прерывания беременности и недостаточной продукцией прогестерона, а 

также снижением количества и нарушением синтеза рецепторов в эндо-

метрии (Lydon J.P. et al., 1995; Mulac-Jericevic B., Conneely O.M., 2004; 

Renthal N.E. et al., 2015). При физиологическом течении беременности 

количество PR в эндометрии возрастает в два раза.  

 

 

Физиологические функции прогестерона  

 

Прогестерон является важным регулятором различных функций 

организма человека. Например, в организме женщины вне беременности 

прогестерон способствует преобразованию эндометрия из состояния 

пролиферации в состояние секреции, инициирует отторжение эндомет-

рия или его переход в «предбеременное» состояние, расслабляет маточ-

ную мускулатуру, увеличивая потенциал покоя миометрия, уменьшает 

сократимость маточных труб, усиливает превращение эстрадиола в эст-

рон и эстриол, увеличивает вязкость цервикальной слизи, влияет на сек-

рецию гонадотропин-рилизинг гормона гипоталамуса, стимулирует вы-

деление лютеинизирующего гормона в малых дозах и угнетает в боль-

ших, способствует освобождению из гипофиза фолликулостимулирую-

щего гормона. 

Регуляция апоптоза, пролиферации осуществляется через стиму-

ляцию экспрессии тканевых факторов роста, которая является одним из 

основных эффектов половых стероидных гормонов в клетках. Следует 

отметить, что гестагенам присущи и пролиферативные и антипролифе-

ративные эффекты, которые осуществляются в зависимости от типа 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Lydon%20JP%5BAuthor%5D&cauthor=true&cauthor_uid=7557380
http://www.ncbi.nlm.nih.gov/pubmed/?term=Renthal%20NE%5BAuthor%5D&cauthor=true&cauthor_uid=26337112
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клетки и физиологического контекста. Известно, например, что проге-

стерон ингибирует синтез ДНК и пролиферацию гладкомышечных кле-

ток (Lee W.S., Harder J.A., 1997). Прогестерон оказывает супрессивное 

действие на пролиферацию и активность лимфоцитов в период бере-

менности. В физиологических концентрациях гормон способствует про-

лиферации клеток молочной железы. Гестагены способны оказывать 

двухфазный эффект: ингибировать клеточный цикл в ранней G1-фазе и 

стимулировать – в поздней G1-фазе, что может влиять на дифференци-

ровку клеток и их пролиферацию. Гестагены через свои рецепторы мо-

гут активировать фосфоинозитид-3-киназу (PI3K)/протеинкиназу B 

(Akt) – сигнальный путь, приводящий к фосфорилированию Akt – клю-

чевого белка – регулятора клеточного роста и дифференцировки (Alkha-

laf M. et al., 2002). Прогестерон обладает влиянием на апоптоз. Антиа-

поптотическое действие проявляется стимулированием экспрессии ан-

тиапоптотических белков, снижением экспрессии проапоптотческих 

факторов, например, каспаза-3 (Djebaili M. et al., 2005).  

Прогестерон участвует в регуляции энергетического обмена (Irwin 

R.W., Yao J., Hamilton R. et al., 2008), снижает выход свободных радика-

лов во внемитохондриальную среду во время работы дыхательной цепи.  

Следовательно, они не только повышают эффективность элек-

тронного транспорта в митохондриях, но и уменьшают уровень ПОЛ 

(перекисного окисления липидов) в клетках (Robertson C.L., Puskar A., 

Hoffman G.E.et al., 2006).  

Хотя прогестерон в силу структурных особенностей не является 

истинным антиоксидантом, высокий уровень этого гормона эффективно 

снижает повреждение клеток свободными радикалами (Roof R.L., 

Hoffman S.W., Stein D.G., 1997). Кроме того, прогестерон повышает 

уровень митохондриального глутатиона (Subramanian M. et al., 1993), 

снижая тем самым уровень нитрита, супероксида и пероксида водорода 

(Chao T.C. et al., 1994).  

Показано, что прогестерон вызывает фосфорилирование фермента 

протеинкиназы B, уменьшающей действие фосфоинозитид-3-киназы и 

киназ, входящих в состав группы «extracellular-signal regulated kinase» – 

составной части метаболизма MAPK (Singh M., 2001). Akt является се-

рин/треонин специфичной протеинкиназой, которая играет ключевую 
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роль в большом количестве клеточных процессов, таких как, метабо-

лизм глюкозы, апоптоз, клеточная пролиферация, транскрипция и ми-

грации клеток. ERK (extracellular signal-regulated kinase) принимает уча-

стие в особом пути сигнальной трансдукции. 

В результате активации специфических генов прогестерон-

рецепторным комплексом происходит стимуляция гликогенеза, метабо-

лизма циклических нуклеотидов, повышение уровня простагландинов, 

пролактина, активатора плазминогена, а также биосинтеза ферментов, 

метаболизующих эстрогены, α-фукозидазы, цАМФ-зависимой киназы II 

типа, гидролазы и фосфатазы (Graham J.D., Clarcke C.L., 1997). Проге-

стерон усиливает активность дегидрогеназ, а именно, изоцитратдегид-

рогеназы и лактатдегидрогеназы, а также ферментов: глюкозо-6-

фосфатазы (King R., Whitehead M.J., 1985), щелочной фосфатазы, глута-

минтрансферазы, катепсина Д (Tarachand U., Eapen J.,1982). 

Накапливаются данные о влиянии прогестерона на структуры цен-

тральной нервной системы, где он участвует в изменении функций кле-

ток. В последнее время особый интерес вызывают данные о нейропро-

текторной и нейрорегенеративной деятельности гормона (Карева Е.Н. и 

др., 2010; Mani S.K., Oyola M.G., 2012).  

В 1998 году рецепторы прогестерона были обнаружены на остеоб-

ластах человека, что предусматривало его физиологическое влияние на 

остеокласты (Boomsma D., Paoletti J., 2002). Была подтверждена роль 

гормона в регуляции функционирования матриксных металлопротеиназ 

(ММР), участвующих в ремоделировании и ресорбции кости. Прогесте-

рон повышает уровень фермента МТ1-ММР.  

Прогестагены оказывают влияние на функционально-метаболи-

ческие характеристики сердечно-сосудистой системы (Boomsma D., Pao-

letti J., 2002). Доказано присутствие PR в артериях, венах, капиллярах. 

Действует гормоны преимущественно как вазоконстрикторы. Считают, 

что половые стероиды (прогестерон и эстрогены) могут регулировать 

маточное кровообращение благодаря прямому влиянию на сосудистую 

стенку. Повышение сократимости миокарда и сердечного выброса в пе-

риод беременности, в определенной степени, объясняют возрастанием 

уровня прогестерона (Караченцев А.Н. и др., 1996). 

В период беременности основными эффектами прогестерона явля-

ется участие в процессах овуляции и имплантации, преобразование эн-
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дометрия в децидуальную ткань, торможение сократимости матки, по-

давление иммунной системы матери, накопление питательных веществ 

в виде подкожного жира для обеспечения ими плода, рост и развитие 

молочных желез, участие в развитии тканей зародыша. Уменьшение 

продукции гормона ведет к прерыванию беременности. 

После оплодотворения высокая концентрация прогестерона важна 

не только для облегчения имплантации, но и для поддержания беремен-

ности путем стимуляции роста матки. Готовность эндометрия к имплан-

тации бластоцисты определяется его рецепторной активностью, и харак-

терными морфологическими изменениями. Прогестерон имеет большое 

значение в подготовке эндометрия к имплантации оплодотворенной яй-

цеклетки. Считается, что роль стероида проявляется в его действии и на 

матку и на развивающуюся бластоцисту (Rothchild I., 1983). Прогесте-

рон облегчает процесс имплантации путем активации ферментов спо-

собных лизировать оболочку яйцеклетки (zona pellucida) (Rothchild I., 

1983). Кроме того, индукция специфичной клеточной пролиферации в 

матке связана с локальной продукцией факторов роста, на многие из ко-

торых прогестерон оказывает прямое модулирующее влияние. Эти фак-

торы увеличивают пролиферацию клеток, активируют синтез ДНК, сти-

мулируют образование компонентов межклеточного матрикса, промоти-

руют митогенез, усиливают ангиогенез. К ним относятся: TGF – транс-

формирующий фактор роста (transforming growth factor), bFGF – основ-

ной фактор роста фибробластов (basic fibroblast growth factor), EGF – эпи-

дермальный фактор роста (epidermal growth factor), PDGF – тромбоци-

тарный ростовой фактор (platelet-derived growth factor), VEGF – сосуди-

стый эндотелиальный фактор роста (vascular endothelial growth factor), 

IGF – инсулиноподобный фактор роста (insulin-growth factor), HGF – ге-

мопоэтический фактор роста и пролактин (Карева Е.Н., 2010; Flake G.P. et 

al., 2003; Graham J.D., Clarke C.L., 1997). 

Для нормального развития беременности необходимы соответ-

ствующие изменения, которые достигаются посредством процесса про-

лиферации. Существует мнение, что в матке он находится под контро-

лем целого ряда факторов роста. Например, установлено, что увеличе-

ние экспрессии семейства EGF: TGF-α и гепаринсвязывающего EGF-

подобного фактора роста (HB-EGF), а также IGF приводят к тканеспе-

цифичной стимуляции пролиферации стромы и эпителия (Graham J.D., 
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Clarke C.L., 1997). TGF регулирует рост клеток, вовлечен в процессы 

апоптоза и ремоделирования ткани, играет принципиальную роль в 

формировании межклеточного матрикса. Прогестерон потенцирует дей-

ствие TGF-β. Во время инвазии трофобласта TGF-β оказывает антипро-

лиферативное, антиинвазивное и проапоптотическое действие, которые 

регулируют рост и инвазию ткани, ремоделирование ткани и ангиогенез, 

необходимые для плацентации (Shah N.M. et al., 2019). Предполагается, 

что гемопоэтический фактор роста, колониестимулирующий фактор ро-

ста-1 оказывают влияние на рост и дифференцировку плацентарного 

трофобласта и их секреция регулируется прогестероном и эстрогенами 

(Pollard J.W. et al., 1987). Прогестерон повышает уровень EGF, который 

оказывает митогенный эффект на ряд репродуктивных тканей. Кроме 

того, EGF облегчает процесс имплантации (Das S.K. et al., 1994). IGF 

секретируется с самых первых дней беременности, он обеспечивает 

пролиферацию и дифференцировку клеток, а также рост матки. Рядом 

исследователей предполагается его действие на бластоцисту (Kapur S. et 

al., 1992).  

Прогестерон способствует не только развитию, но и васкуляриза-

ции миометрия. Ангиогенез регулируется половыми стероидными гор-

монами. Прогестерон (наряду с эстрадиолом) стимулирует экспрессию 

мРНК VEGF-А и VEGF-В. VEGF – является важным фактором регуля-

ции ангиогенеза во всех тканях и органах человека, присутствует как в 

тканях плаценты, так и в тканях плода. Он стимулирует пролиферацию 

и миграцию эндотелиальных клеток, обладает высокой активностью в 

индукции сосудистой проницаемости, что является важным для процес-

сов имплантации и плацентации. Помимо разностороннего влияния на 

процессы ангиогенеза, пролиферации и дифференцировки тканей, суще-

ствует предположение о влиянии VEGF на эмбрион на ранних стадиях 

имплантации, когда процессы ангиогенеза еще отсутствуют. Также из-

вестно, что VEGF участвует в координации процессов дифференциров-

ки, миграции и инвазии трофобласта (Wulff C., Wilson H., Dickson S.E., 

Wiegand S.J., Fraser H.M., 2002). Высокая активность VEGF в эндомет-

рии коррелирует с активностью плацентарного ростового фактора 

(PIGF) – важного ангиогенного фактора и их совместное влияние оказы-

вает регуляторное действие на процессы имплантации (Никитина Л.А. и 

др., 2007). 
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Прогестерон является мощным стимулятором экспрессии bFGF в 

матке (Aktas G., Kayton R., 2000). Основной фактор роста фибробластов 

является одним из важнейших регуляторов ангиогенеза и клеточной 

дифференцировки в плаценте. Этот фактор оказывает стимулирующее 

действие на пролиферацию эндотелиальных клеток артерий матки и 

плода, участвует в регенерации тканей, контролирует рост и дифферен-

цировку клеток (в частности мезодермы), развитие эмбриона. Нужно 

отметить такую функцию bFGF и VEGF, как способность регулировать 

маточно-плацентарный кровоток (Никитина Л.А. и др., 2007). 

Прогестерон стимулирует экспрессию адреномедуллина и его ре-

цепторов – еще одного стимулятора ангиогенеза и регулятора пролифе-

рации (Xu Q., 2006). Некоторые функции прогестерона включают сти-

муляцию глюкогенеза, метаболизм циклических нуклеотидов, синтез и 

секрецию белков (Graham J.D., Clarke C.L., 1997). Прогестерон, увели-

чивает объем внутрисосудистой жидкости, влияя на обмен натрия в ор-

ганизме матери, и тем самым способствует удалению продуктов мета-

болизма плода.  

Одной из основных функций прогестерона в период беременности 

является регуляция тонуса матки (Deng Y. et al., 2020; Carp H.J.A., 2018) 

через сигнальные пути, инициируемые ионами Ca2+, простагландинами, 

релаксином и окситоцином (Graham J.D., Clarke C.L., 1997; Di Renzo 

G.C. et al., 2016). Увеличение ионизированного Са2+ приводит к сокра-

щению миометрия. Индукция и секреция кальцитонина (пептидного 

гормона кальциевого гомеостаза) снижает уровень кальция в матке, 

предотвращая сокращение. В ранний период беременности кальцитонин 

вырабатывается в клетках железистого эпителия под воздействием про-

гестерона (Zhu L.J. et al., 1998). Комплекс Са2+-кальмодулин связывается 

с киназой легких цепей миозина (MLCK), активируя этот фермент. 

MLCK играет центральную роль в реализации сигнальных путей стиму-

лирования и ингибирования сокращения миометрия. Прогестерон по-

давляет работу системы кальций-кальмодулин-киназа легких цепей 

миозина (calcium-calmodulin-MLCK system) и, следовательно, актив-

ность гладких мышц матки, тем самым, сохраняя покой миометрия (Pe-

pe G.J., Albrecht E.D., 1995). MLCK может фосфорилироваться протеин-

киназой A (цАМФ-зависимой протеинкиназой), что снижает сродство 

фермента к комплексу кальмодулин-кальций и приводит к инактивации 
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энзима. Способность протеинкиназы A ингибировать активность MLCK 

в миометрии, даже в присутствии агонистов, повышающих концентра-

цию Ca2+, позволяет биохимически обосновать вывод, что агенты, кото-

рые повышают уровень внутриклеточного цАМФ – ингибируют сокра-

щение матки даже в присутствии Ca2+-активирующих агентов (Challis 

J.R.G. et al., 2000). 

Прогестерон ингибирует активность простагландинов, способ-

ствуя тем самым уменьшению сократимости матки (Künzel J. et al., 

2014). Такое подавление происходит несколькими путями, включая бло-

кирование действия простагландинов, уменьшение простагландинового 

синтеза и повышение их инактивации. Прогестерон стимулирует фер-

мент – простагландин-15-дегидрогеназу, катализирующей процесс ок-

сидации простагландинов и их инактивации. Прогестерон является ан-

тагонистом простагландинов в период беременности и лютеиновой фазе 

менструального цикла, так как он снижает уровень простагландинов F2α 

и E в эндометрии матки. Уменьшение уровня прогестерона в конце бе-

ременности ассоциируется с усилением активности синтеза простаглан-

дина F2α, ведущей к началу родов (Graham J.D., Clarke C.L., 1997). Дей-

ствие простагландинов осуществляется непосредственно через соб-

ственные рецепторы или окситоциновые рецепторы, белки которых ре-

гулируются стероидными гормонами. Уровень окситоциновых рецеп-

тров в матке человека ингибируется путем блокирования продукции 

простагландина F2α прогестероном, и, наоборот, индукция простаглан-

дина F2α приводит к снижению прогестерона и параллельно, к увеличе-

нию рецепторов окситоцина (Graham J.D., Clarke C.L., 1997). Следует 

отметить, что модуляция аффинности окситоциновых рецепторов отно-

сится к геномным эффектам прогестерона (Mellon S.H., 2008). 

Для предотвращения сократимости матки прогестерон способству-

ет появлению физиологической резистентности к ангиотензину, заметно 

уменьшая экспрессию рецепторов ангиотензина II (Schirar A., Capponi A., 

Catt K.J., 1980; Stjernholm Y.V., 2012). Точно так же установлено, что под 

действием прогестерона в миометрии крыс во время беременности, воз-

никала рефрактерность от токолитического эффекта предсердного 

натрийуретического фактора (Potvin W., Varma D.R., 1991). 

Прогестерон через собственные рецепторы увеличивает высво-

бождение EDRF – релаксирующего фактора эндотелия, NO (Molinary C., 
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Battaglia A., Grossini E et al., 2004), ингибирует секрецию контрактиль-

ного фактора эндотелия и эндотелина-1 (Orshal J., Khalil R.A., 2004). 

В релаксации гладкой мускулатуры матки во время беременности 

участвует адренергическая система. Прогестерон увеличивает тран-

скрипцию β-адренергических рецепторов в миометрии приводя к повы-

шению его чувствительности (сенсибильности) к адренергическим аген-

там (Graham J.D., Clarke C.L., 1997; Vivat V. et al., 1992) и способствуя 

снижению тонуса матки.  

Было показано, что прогестерон ответственен за поддержание 

уровня релаксина (Yki-Jarvinen H. et al., 1985). Релаксин – гормон, инги-

бирующий спонтанное или опосредованное простагландином сокраще-

ние миометрия. Он повышает уровень цАМФ и ингибирует метаболизм 

фосфоинозитидов через активацию цАМФ-зависимых протеинкиназ 

(Challis J.R.G. et al., 2000). Уровень цАМФ, в свою очередь, подавляет 

активность MLCK. Релаксин также способствует поддержанию имплан-

тации и ранней беременности путем стимуляции секреции коллагеназы, 

протеогликазы, β-глюкоронидазы и активатора плазминогена, что спо-

собствует стиммуляции коллеганообразования, поддерживая эластич-

ность матки (Graham J.D., Clarke C.L., 1997).  

Прогестерон увеличивает скорость транскрипции PTHrP – белка, 

родственного паратиреоидному гормону в миометрии. PTHrP способ-

ствует увеличению плацентарного транспорта кальция и уровня цАМФ, 

что ингибирует сокращение гладких мышц матки (Ferguson J.E. et al., 

1992). 

В настоящее время определена роль прогестерона в иммунной то-

лерантности организма матери по отношению к аллогенному плоду 

(Lissauer D. et al., 2015). При этом иммунологические эффекты гормона 

в организме беременной женщины реализуются особым белком, полу-

чившим название индуцированный прогестероном блокирующий фак-

тор – PIBF (Lockwood C.J. et al., 2001; Piccinni M.P. et al., 2000; Shah 

N.M. et al., 2019). Энзим синтезируется СD56+-клетками плаценты и де-

цидуальной оболочкой, обладает существенной антиабортивной актив-

ностью (Druckmann R., Druckmann M.A., 2005). Иммунологическое вли-

яние PIBF касается как клеточных, так и гуморальных иммунных меха-

низмов. Было показано, что PIBF увеличивает продукцию цитокинов Th 

(Т-хелперы)-2 посредством связывания с новым типом рецепторов IL-4 
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и путем активации JAK/STAT пути, приводя, таким образом, к измене-

нию баланса Th1/Th2. В присутствии PIBF вырабатывается в 8 раз 

больше Th2-цитокинов, чем в его отсутствие (Mulac-Jeričević B. et al., 

2019). Увеличение продукции Th2-цитокинов влечет за собой повыше-

ние выработки иммуноглобулинов и оказывает влияние на гуморальный 

иммунитет. Этот механизм способствует сохранению беременности.  

Считается, что реакция, обусловленная Th2 способствует нор-

мальному течению береенности, в то время, как Th1 оказывают прямой 

цитотоксический эффект на клетки эмбриона и кроме того, путем акти-

вации системы коагуляции приводят к формированию внутрисосуди-

стых тромбов и нарушению кровоснабжения плода, а затем и к его зако-

номерной гибели. PIBF меняет профиль секреции цитокинов (Shah N.M. 

et al., 2019), ингибируя продукцию воспалительных, цитотоксических 

(например, интерферона-δ, фактора некроза опухоли-α, интерлейкинов-

1, 2, 6) и увеличивая образование регуляторных цитокинов (например, 

интерлейкинов – 3, 4, 5, 10, 13, 15).  

Провоспалительные цитокины обладают не только прямым эм-

бриотоксическим эффектом, но также ограничивают инвазию трофобла-

ста, нарушая нормальное его формирование. Кроме того, избыточное 

количество провоспалительных цитокинов ведет к активации протром-

биназы, что обусловливает тромбозы, инфаркты и отслойку трофобла-

ста, и в конечном итоге – выкидыш. Регуляторные цитокины, наоборот, 

способствуют формированию трофобласта, контролируют ангиогенез, 

повышают продукцию хорионического гонадотропина, а также осу-

ществляют иммуносупрессию. Кроме того, PIBF ингибирует цитоток-

сичность NK-клеток, блокируя их дегрануляцию и выход перфорина и 

протеиназ, которые путем перфорации мембран чужеродных клеток по-

падают внутрь их и индуцируют апоптоз (Mulac-Jeričević B. et al., 2019). 

PIBF также предотвращает трансформацию NK-клеток в так называе-

мые лимфокин-активированные киллеры (LAK-клетки), обладающие 

способностью разрушать клетки трофобласта.  

Следовательно, прогестерон защищает эмбрион от деструкции 

натуральными киллерами. Он также оказывает влияние на В-лимфоциты 

и индуцирует продукцию новой подгруппы иммуноглобулинов – асим-

метричных антител, помогающих скрыть антигены плода от материн-

ской иммунной системы. Эти антитела не обладают высоким сродством 



________________________  Глава II _______________________ 

35 

 

к антигенам плода, они способны выступать в качестве «блокирующих» 

антител и не вызывают активации цитотоксических реакций.  

Таким образом, они защищают эмбрион и предупреждают его ги-

бель иммунной системой матери. У беременных женщин определяется 

прямая связь между экспрессией PIBF и количеством асимметричных 

молекул – IgG (Szekeres-Bartho J, Halasz M, Palkovics T. 2009). 

PIBF ингибирует работу фосфолипазы А2 и, таким образом, 

предотвращает высвобождение арахидоновой кислоты, снижая тем са-

мым синтез простагландинов (Szekeres-Bartho J., Poigar B., 2010). Благо-

даря всем этим эффектам PIBF предотвращает деструкцию клеток эм-

бриона, и, возможно, является своеобразным «ключом» к его выжива-

нию. 

В плаценте и матке прогестерон контролирует локальную экспрес-

сию иммуномодулирующих молекул, таких как галектин-1 (Gal-1) (Blois 

S.M., Ilarregui J.M., Tometten M., et al., 2007) и гемоксигеназа 1 (Hmox1) 

(Solano M.E. et al., 2015). Эти мощные иммуномодуляторы имеют ре-

шающее значение для установления и продолжения беременности, как 

показано in vitro и in vivo (Solano M.E. et al., 2020). Например, Gal-1 ин-

дуцирует толерогенный фенотип в дендритных клетках, что приводит к 

расширению Treg (Mao G. et al., 2010). В свою очередь, фермент Hmox1 

поддерживает генерацию регуляторных Т-клеток CD8+CD122+, способ-

ствующих васкуляризации плаценты и росту плода (Solano M.E. et al., 

2015). Кроме того, прогестерон и его производные стимулируют в эндо-

метрии продукцию протеинов, в частности, белка Tj6, который вызыва-

ет апоптоз естественных киллеров (Barrera D, Avila E, Díaz L., 2007). 

На этом функции данного гормона во время беременности не ис-

черпываются. Прогестерон предшествует образованию стероидных гор-

монов во внутриутробном периоде развития. Он также участвует в раз-

витии тканей у зародыша. Предполагается, что адекватный уровень 

гормона необходим для нормального развития костной ткани (Boomsma 

D., Paoletti J., 2002) и головного мозга.  

Существующие данные свидетельствуют об участии прогестерона 

в некоторых ключевых событиях, таких как нейрогенез, нейропротек-

ция, организация нервной системы, олигодендрогенез, миелинизация и 

дифференцировка пола мозга (Ghoumari A.M. et al., 2020; González-

Orozco J.C. et al., 2019). Например, показано, что прогестерон необхо-
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дим для нормального функционирования и дифференцировки первично-

го гиппокампа, кортикальных и стриарных нейронов (VanLandingham 

J.W. et al., 2006). По некоторым данным, именно материнский прогесте-

рон, а не плодовые стероиды – андрогены и эстрогены, индуцирует ген-

дерные различия в дифференцировке мозга человека через активацию 

рецепторов прогестерона, которая модулирует функционирование кле-

ток мозга (Wagner C.K., Nakayama A.Y., De Vries G.J., 1998). 

 

 

Метаболизм прогестерона в плаценте  

 

Прогестерон метаболизируется в печени и в гормонозависимых 

органах (например, в плаценте), где происходит его трансформация, в 

основном, в 5β-прегнан-3α, 20α-диол, лишенный гормональной активно-

сти (Bardin C.W., Milgrom E., Mauvais-Jarvis P., 1983). 

В процессе метаболизма гормона принимает участие целый ряд 

ферментов. Они являются специфичными для конкретных участков сте-

роидной молекулы. В результате их действия образуются, напрямую – 

5β-прегнаны, 5α-прегнаны, 4-прегнаны и, опосредованно, кортикостеро-

иды, андрогены и эстрогены. Энзимы, метаболизирующие прогестерон, 

содержатся во многих тканях. К ним относятся 5α- и 5β-редуктазы, 3α-

HSD, 20α-HSD, 3β-HSD, 6α(β)-, 11β-, 17- и 21-гидроксилазы и С17-20-

лиазы (Wiebe J.P., 2006). Рассмотрим подробнее те из них, которые при-

нимают участие в метаболизме плаценты. 

3β-гидроксистероиддегидрогеназа – один из важнейших энзимов, 

участвующих в образовании не только прогестерона, но и всех активных 

стероидных гормонов. В настоящее время выделено и охарактеризовано 

шесть изоформ, каждая из которых является продуктом одного отдель-

ного гена (Payne A.H., Hales D.B., 2004). Свои номера они получали в 

порядке их обнаружения. 3β-гидроксистероиддегидрогеназа осуществ-

ляет оксидацию и изомеризацию: окисляет гидроксил у 3-го углеродно-

го атома до 3-кетогруппы и катализирует перенос двойной связи из 5-6-

го положения в 4-5-е положение, который сопровождается внутри- или 

межмолекулярным переносом водорода от С4 к С6. Локализуется в эн-

доплазматическом ретикулуме и митохондриях. Фермент I типа широко 
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распространен в стероидогенных тканях и хорошо выражен в плаценте, 

где он преимущественно локализован в синцитиотрофобласте (Fraichard 

C. et al., 2020 Riley S.C. et al., 1992; Hill M. et al., 2011). Активность его 

постоянна на протяжении всей беременности. Одно из основных значе-

ний 3β-гидроксистероиддегидрогеназы в этот период – преобразование 

прегненолона в прогестерон – главный гормон беременности.  

Большое значение для метаболизма прогестерона имеют ферменты 

семейства AKR. Считается даже, что AKR из подсемейства 1D, 1C и 1B 

через метаболизм прогестерона и простагландинов способствуют опре-

делению времени родов (Byrns M.C., 2011).  

Энзим AKR1D1 – 5β-редуктаза относится к семейству AKR, ката-

лизирует редукцию и С-19 и С-21стероидов (в том числе и прогестеро-

на) в 5β-редуцированные метаболиты, а также способствует формирова-

нию желчных кислот в печени (Kochakian C.D, 1983; Okuda A., Okuda 

K., 1984; Chen M., 2011). Ранние изыскания не выявляли активности 

фермента в репродуктивных тканях человека, что можно объяснить не-

совершенством используемого метода. Более поздние исследования до-

казали присутствие 5β-редуктазы в децидуальной, хориальной и амнио-

тической оболочках. Фермент выявлен в плаценте, хоть и в меньшем 

количестве по сравнению с печенью, но в большем, чем в указанных 

выше органах (Mitchell et al., 2005). Установлено, что AKR1D1 является 

единственным ферментом, необходимым для всех 5β-стероидных мета-

болитов, присутствующих в организме человека (Chen M., 2011). Суще-

ствует мнение, что AKR1D1 может иметь особую актуальность для под-

держания беременности (Byrns M.C., 2011), так как конвертирует обра-

зование 5β-дигидропрогестерона (5β-ДГП). Ранее этот этап метаболизма 

считался стадией инактивации. В настоящее время доказано, что 5β-

ДГП – ключевой медиатор действия прогестерона. 5β-ДГП лимитирует 

сократимость матки сильнее, чем сам прогестерон. Ферменты AKR1D1 

и семейства AKR1C способствуют поддержанию этого процесса. Коли-

чество 5β-ДГП, а также экспрессия AKR1D1, значительно снижаются к 

концу беременности, что позволило ряду исследователей прийти к вы-

воду о значении данного стероида для инициации родов (Sheehan P. M., 

2006). Активность AKR1D1 ингибируется Δ4-стероидами – особенно 11-

деоксикортикостероном и 4-андростен-3,17-дионом, что, таким образом, 

предполагает регуляцию активности фермента (Byrns M.C., 2011). 
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Анализ литературных данных позволяет сделать вывод, что работа 

AKR1D необходима для снижения сократимости матки в период бере-

менности. Снижение ее активности приводит к началу родовой деятель-

ности и в физиологических условиях отмечается в самом конце бере-

менности. 

AKR1C1, AKR1C2 и AKR1C3 катализируют редукцию прогесте-

рона в 20- и 3-кетостероиды. Считается, что благодаря двойственной ак-

тивности осуществляются разные метаболические преобразования про-

гестерона, 5α-дигидропрогестерона и 5β-дигидропрогестерона (Jin Y. et 

al., 2011). Данные ферменты экспрессируются в репродуктивных тканях, 

включая плаценту. Образующиеся при их действии неактивные проге-

стагеновые метаболиты осуществляют паракринную супрессию рецеп-

торов прогестерона. Ряд авторов полагали, что энзимы семейства 

AKR1C, благодаря тому что превращают прогестерон в неактивный 20-

дигидропрогестерон (4-прегнен-20α-ол,3-он), защищают плод от цито-

токсических эффектов прогестерона и тем самым обеспечивает нор-

мальное развитие плода (Jayasekara W.S.N. et al., 2005). Кроме того, есть 

мнение, что 20α-, 3α- и 3β-гидрокси-прогестиновые продукты деятель-

ности ферментов AKR1C снижают токолитическую активность (Byrns 

M.C., 2011). 3-гидроки-продукты, такие как прегненолон и аллопрегне-

нолон являются нейроактивными веществами, обладающими обезболи-

вающим и успокаивающим действием на организм матери и нейропро-

тективным – на организм плода (Byrns M.C., 2011; Hill M. et al., 2011; 

Steckelbroeck S. et al., 2004). 

Так в плаценте присутствует AKR1C3 (3α-HSD тип II), которая 

может катализировать превращения прогестерона в 20α-

дигидропрогестерон (Peltoketo H., 1999; Li Y., 2005; Sakurai N., 2006). 

AKR1C3 – является мультипотентным, широко распространенным фер-

ментом, катализирующим преобразование альдегидов и кетонов в спир-

ты (Matsuura K., 1998; Penning T.M., 2006). Эта изоформа функциониру-

ет двунаправлено и превращает активные формы прогестинов, андроге-

нов и эстрогенов в их неактивные метаболиты, однако, преимуществен-

но работает как редуктаза (Matsuura K., 1998; Penning T.M., 2001.; 

Steckelbroeck S., 2004). В последнее время изучение фермента в плацен-

те связано, в основном, с его ролью в метаболизме простагландинов. 

AKR1C3 может синтезировать два изомера простагладинов F2 (Byrns 
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M.C., 2011). AKR1C1 (20α,(3α)-HSD) имеет самую высокую каталитиче-

скую активность по отношению к 20-кетостероидам, и подобно AKR1C3 

преимущественно работает как редуктаза (Steckelbroeck S., 2004). Этот 

фермент, вероятно, играет важную роль в инактивации прогестерона в 

миометрии во время спонтанных родов. Из всех трех ферментов семей-

ства, обнаруженных в плаценте, активность AKR1C2 (3α- HSD тип II) в 

данном органе выявлена в меньшей степени. Установлено, что провос-

палительные цитокины, такие как IL-1β, может усиливать местный ме-

таболизм прогестерона путем активации ферментов AKR1C1 и С2 

(Roberson A.E. et al., 2012). 

Следует упомянуть и о том, что ферменты, относящиеся к семей-

ствам AKR1C и AKR1D, способствуют синтезу нейроактивных стерои-

дов, таких как аллопрегнанолон и прегненолон, из предшественников, 

образующихся в плаценте. Учитывая нейропротекторное действие этих 

стероидов, а также то, что они оказывают обезболивающее и анксиоли-

тическое действие на организм матери, и нейропротективное – на орга-

низм плода, ряд авторов считает [Byrns M.C., 2011; Hill M., 2011; Steck-

elbroeck S., 2004], что подавление активности этих ферментов в период 

беременности может быть нежелательным. 

Также в плаценте присутствуют 17β-гидроксистероиддегидро-

геназы, которые принимают участие в метаболизме прогестерона – 17β-

HSD тип 1, 17β-HSD тип 7 и 17β-HSD тип 12. Локализуется они в син-

цитиотрофобласте и могут катализировать превращения прогестерона в 

20α-дигидропрогестерон и 4-прегнен-3β-ол-20-он (Peltoketo H., 1999; Li 

Y., 2005. Sakurai N., 2006; Lin S.X., 2006). Как упоминалось выше, ос-

новные реакции восстановительного характера осуществляются альдо-

кеторедуктазами AKR1C1 и AKR1C3, в то время как, окислительная ре-

акция катализируется 17β-HSD типа 2. Фермент 17β-HSD тип 2 может 

принимать участие в метаболизме прогестинов, конвертируя преобразо-

вание 20α-гидроксипрогестерона в прогестерон (Saloniemi T. et al., 

2012). 

Стероид-5α-редуктаза (SRD5A), известная также как 3-оксо-5α-

стероид 4-дегидрогеназа, присутствует в плаценте и может поставлять 

предшественники для аллопрегненолона плода (Vu T.T., 2009). Обнару-

жено две изоформы данного энзима – SRD5A1 и SRD5A2, активность 

которых увеличивалась по мере прогрессирования беременности. 
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Синтез прогестерона в плаценте при физиологической  

и осложненной ЦМВ инфекцией беременности 

 

Синтез прогестерона в период беременности осуществляется пла-

центой. Начиная с 5-й недели плацента становится основным местом 

синтеза гормона и к концу беременности производит до 300 мг в день, 

что примерно в 10 раз больше, чем желтое тело яичников (Strauss J.F., 

Martinez F., Kiriakidou M., 1996). Прогестероногенез из холестерола идет 

при последовательном действии двух плацентарных ферментов P450scc 

и 3β-гидроксистероиддегидрогеназы I типа (Payne A.H., Hales D.B.,2004, 

Penning T.M., 1997; Riley S.C., Dupont E., Walton J.C. et al., 1992; Tuckey 

R. С., 2005; Watanabe H., Hirato K., Yanaihara T. et al., 1987). Последний 

катализирует конечную стадию биосинтеза прогестерона. 

Нами было проведено исследование метаболической активности 

3β-гидроксистероиддегидрогеназы I типа в ворсинчатых хорионах на 

разных сроках беременности, полученных при медицинском аборте (4-

10 недель), и в зрелых плацентах при родах в срок (37-38 недель) от 

ЦМВ-серонегативных женщин с физиологическим течением беременно-

сти. В качестве субстрата реакции использовали Δ5-прегнен-3β-ол-20-

он. Энзим хорошо выявлялся в трофобластах ворсин хориона, начиная с 

4-6 недель беременности (рис. 6). При этом средние цитофотометриче-

ские показатели составили 25,33±1,067 пиксель/мкм2.  

 

 

 

 

 

Рис. 6. Ворсинчатый хорион. 6 нед. 

беременности. Физиологическое 

течение беременности. Интенсив-

ность гистохимической реакции 

на 3β-гидроксистероиддегидро-

геназу I типа высокая. Увел. 15х90. 
 

По мере увеличения срока беременности интенсивность гистохи-

мической реакции на 3β-гидроксистероиддегидрогеназу I типа соответ-
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ственно увеличивалась до 27,56±1,113 пиксель/мкм2 на сроке 7-8 недель 

и до 33,90±2,091 пиксель/мкм2 на сроке 9-10 недель беременности. В 

зрелой плаценте средний цитофотометрический показатель был выше, 

чем в ранних плацентах и составил 47,23±2,198 пиксель/мкм2.  

Анализ активности 3β-гидроксистероиддегидрогеназы I типа в 

ворсинах хориона, полученных при инструментальной ревизии матки 

после самопроизвольного аборта (4-10 недель), и в зрелой плаценте при 

преждевременном разрыве плодных оболочек (37-38 недель) от женщин 

с обострением ЦМВ инфекции в период беременности (рис. 7), показал 

значимое уменьшение средних цитофотометрических показателей фер-

мента в трофобластах ворсинчатого хориона на сроке 4-6 недель до 

15,08±1,034 пиксель/мкм2 (р<0,001), на сроке 7-8 недель –  до 

17,63±1,198 пиксель/мкм2 (р<0,001), на сроке 9-10 недель – до 

21,97±2,078 пиксель/мкм2 (р<0,01) и в зрелой плаценте на сроке 37-38 

недель– до 32,56±2,067 пиксель/мкм2  (р<0,01) по сравнению с анало-

гичными показателями в группе с физиологическим течением беремен-

ности.  

Таким образом, на фоне обострения ЦМВ инфекции не зависимо 

от срока беременности отмечается снижение 3β-гидроксистероид-

дегидрогеназной активности в плаценте.  

 

 

 

 

 

Рис. 7. Ворсинчатый хорион. 6 нед. 

беременности. Обострение ЦМВ 

инфекции на сроке 3 нед. Интен-

сивность гистохимической реакции 

на 3β-гидроксистероиддегидро-

геназу I типа низкая. Увел. 15х90. 
 

 

При иммуноферментном исследовании супернатантов этих же 

плацент установлено статистически значимое снижение средних показа-

телей прогестерона при обострении ЦМВ инфекции по сравнению с фи-
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зиологическим течением беременности, свидетельствовующее о том, 

что активность энзима может являться прямым интегральным показате-

лем эффективности продукции данного гестагена. Показатели прогесте-

рона представлены в таблице 1.  

 

Таблица 1. Показатели прогестерона в ворсинчатом хорионе и зрелой плаценте 

при физиологической беременности и осложненной ЦМВ инфекцией 

 

Примечание: здесь и далее р – достоверность различий с группой женщин с фи-

зиологическим течением беременности.  

 

При исследовании уровня прогестерона в сыворотке крови у тех 

же беременных женщин с обострением ЦМВ инфекции выявлено зна-

чимое снижение средних показателей гормона по сравнению с физиоло-

гическим течением беременности (табл. 2).  

 

Таблица 2. Показатели прогестерона в сыворотке крови у женщин при физио-

логической беременности и осложненной ЦМВ инфекцией 

 

  

Показатели 

прогестерона, 

нмоль/л 

Срок  

беременности, 

нед. 

Обострение 

ЦМВ  

инфекции 

р Физиологическое 

течение  

беременности 

Ворсинчатый 

хорион 
4-6 16,93 ± 1,31 <0,001 55,22 ± 1,07 

 7-8 23,53 ± 2,71 <0,001 93,47 ± 3,72 

 9-10 48,3 ± 4,33 <0,001 101,72 ± 2,16 

Зрелая плацента 37-38 179,87 ± 3,15 <0,01 237,42 ± 5,05 

Показатели 

 

Срок  

беременности, 

нед. 

Обострение 

ЦМВ  

инфекции 

р Физиологическое 

течение  

беременности 

Прогестерон, 

нмоль/л 

4-6 20,43 ± 3,11 <0,05 57,71 ± 4,20 

 7-8 26,03 ± 2,73 <0,01 101,33 ± 3,64 

 9-10 63,30 ± 2,05 <0,05 110,72 ± 5,20 

 37-38 183,10 ± 5,75 <0,05 254,92 ± 13,11 
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Снижение количества прогестерона в крови женщины наблюда-

лось разными исследователями при острых респираторных вирусных 

инфекциях (Луценко М.Т., и др., 2000; Ярославский В.К., 1989). Прак-

тически всегда данное обстоятельство сопровождалось хронической 

плацентарной недостаточностью (Пустотина О.А., 2006; Рец Ю.В., 2008; 

Azenabor A.A., 2007). 

Адекватный уровень прогестерона необходим для прогрессирова-

ния беременности. Снижение интенсивности образования гормона в 

плаценте, обнаруженное при обострении персистирующей вирусной 

инфекции, несомненно, скажется на тех процессах, которые контроли-

руются гормоном. Установлено, что снижение количества прогестерона 

ведет к негативным последствиям (da Fonseca E.B. et al., 2009). Это до-

казано в экспериментах, в которых индуцировалось прерывание бере-

менности введением антител к прогестерону (Byrns M.C., 2011; Kulier 

R.et al., 2011; Li Y., 2004). 

Совсем недавно была установлена необходимость прогестерона 

для ослабления местных воспалительных реакций, вызванных активаци-

ей Т-клеток на границе между матерью и плодом и в шейке матки 

(Arenas-Hernandez M. et al., 2019). Такая способность гормона предот-

вращает преждевременные роды. Наличие эффекторных Т-клеток памя-

ти специфично для вирусных инфекций, поэтому, обострение цитомега-

ловирусной инфекции могло вызвать их активацию, а аберрантное ко-

личество прогестерона не смогло предотвратить негативные послед-

ствия данного явления.   

В начале беременности продукция прогестерона настолько важна, 

что ее недостаток является в большинстве случаев основанием прежде-

временного окончания гравидарного периода (Доброхотова Ю.Э., Озе-

рова Р.И., Мандрыкина Ж.А. и др., 2008; Подтетенев А.Д., Братчикова 

Т.В., Орлов Е.Н., 2000; Пустотина О.А., 2006; Сахаутдинова И.В., 2014; 

Byrns M.C., 2014; Nygren K.G. et al., 1973; Wiener M., Friedlander R.L., 

1971; Schindler A.E., 2004).  

Этому может быть несколько причин. Во-первых, прогестерон об-

легчает имплантацию зародыша путем активации нескольких механиз-

мов, в том числе стимуляции лизирующих ферментов. Поэтому недо-

статок прогестерона будет препятствовать становлению беременности. 

Во-вторых, поскольку данный гормон способствует преобразованию 

http://www.ncbi.nlm.nih.gov/pubmed/?term=da%20Fonseca%20EB%5BAuthor%5D&cauthor=true&cauthor_uid=19300251
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kulier%20R%5BAuthor%5D&cauthor=true&cauthor_uid=22071804
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kulier%20R%5BAuthor%5D&cauthor=true&cauthor_uid=22071804
http://www.ncbi.nlm.nih.gov/pubmed/?term=Byrns%20MC%5BAuthor%5D&cauthor=true&cauthor_uid=23410596
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слизистой оболочки матки в децидуальную ткань и стимулирует рост 

матки, то уменьшение его концентрации приводит к десинхронизации 

развития эндометрия и миометрия, слабой инвазии цитотрофобласта и, 

как следствие, к снижению маточно-плацентарного кровообращения. В-

третьих, адекватное количество прогестерона необходимо для ингиби-

рования реакции отторжения плодного яйца. В случае уменьшения со-

держания гормона блокируется защита от деструкции его натуральными 

киллерами. Также отмечают опосредованный Th1цитокинами цитоток-

сический эффект на клетки эмбриона, формирование внутрисосудистых 

тромбов и нарушение кровоснабжения плода. 

Во второй половине беременностии недостаточный уровень гор-

мона может иметь самые серьезные последствия для успешного завер-

шения беременности ввиду того, что он необходим для поддержания 

функции плаценты, обеспечения гомеостаза эндометрия и миометрия, а 

также иммунной толерантности организма беременной (Solano M.E. et 

al., 2020). Одна из доминирующих ролей прогестерона – сохранение то-

нуса матки в состоянии покоя. Гормон нужен для подавления активно-

сти гладкой мускулатуры миометрия через супрессию системы кальций-

кальмодулин-MLCK, ингибирование синтеза простагландинов и моду-

ляцию аффинности окситоциновых рецепторов. Нарушение перечис-

ленных функций создает предпосылки для развития плацентарной недо-

статочности и значительно увеличивает риск прерывания беременности. 

Снижение уровня прогестерона может способствовать развитию 

задержки внутриутробного роста и развития плода (Solano M.E. et al., 

2020). В качестве основного звена патогенеза данного осложнения бе-

ременности считают плацентарную недостаточность, формирующуюся, 

например, вследствие нарушения маточного или плацентарного ангио-

генеза. Как отмечалось выше, прогестерон принимает активное участие 

в васкуляризации матки и плаценты посредством различных механиз-

мов. Кроме того, было выявлено, что уменьшение содержания прогесте-

рона связано с эпигенетическими изменениями в плаценте, которые 

привели к снижению экспрессии Hmox-1 и задержке внутриутробного 

роста и развития плода. Эти изменения были вызваны увеличением ци-

тотоксических CD8+ T-клеток, продуцирующих воспалительные цито-

кины (Solano M.E. et al., 2015). 
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Метаболизм прогестерона в плаценте при физиологической  

и осложненной ЦМВ инфекцией беременности  

 

В середине прошлого века был выполнен ряд работ, посвященных 

метаболизму прогестерона (Jaffe R.B., Ledger W.J., 1966; Lacy L.R. et al., 

1976; Milewich L. et al., 1978; Schatz F., Morrill G.A., 1975; Sheldrick E.L. 

et al., 1981). Они представляли собой, в основном, количественное и ка-

чественное описание веществ, идентифицированных, в том числе и в 

плаценте. В настоящее время исследование многообразий превращения 

прогестерона еще продолжается.  

Метаболизм прогестерона был описан в плаценте человека (Mile-

wich L. et al., 1978; 1979), плодных оболочках и миометрии (Mickan H., 

1976; Junkermann et al., 1977). Одним из первых (Little B. et al., 1959) 

стало исследование преобразования прогестерона в 4-прегнен-20α-oл, 3-

он (20α-дигидропрогестерон). Было установлено, что в плаценте 20α-

дигидропрогестерон является основном метаболитом прогестерона. 

Второй наиболее распространенный метаболит – 5α-

дигидропрогестерон (Milewich L. et al., 1977). Оба эти метаболита были 

исследованы в различных тканях. Концентрация 20α-

дигидропрогестерона в плаценте увеличивалась с течением беременно-

сти. Было предположено, что это необходимо для регуляции и умень-

шения количества циркулирующего прогестерона. Аналогичная тенден-

ция была выявлена в плодных оболочках.  

Метаболизм прогестерона в миометрии отличался от такового в 

плаценте. Относительно большую важность здесь имела 5α-редуктазная 

активность (Mickan H., 1976). В плаценте 5β-дигидропрогестерон (5β-

прегнан-3,20-дион) образуется из прогестерона. Установлено, что кон-

центрация 5β-ДГП увеличивалась в 16 раз во время беременности, до-

стигая своего максимума к 30 недели. Полагают, что трансформации 

метаболитов прогестерона могут быть связаны с изменением настроения 

во время беременности, в том числе и с депрессией (Pearson Murphy B.E. 

et al., 2001). Рядом исследований показано, что этот гормон поддержи-

вает тонус миометрия в состоянии покоя, причем он обладает самым 

мощным токолитическим действием среди всех стероидных гормонов 

(Kubli-Garfias C. et al., 1979; Thornton S., 1999). Одни авторы полагают, 



________________________  Глава II _______________________ 

46 

 

что механизм данного явления заключается в следующем: 5β-ДГП, свя-

зываясь с рецепторами окситоцина, блокирует их работу (Grazzini E., 

Guillon G., Mouillac B., Zingg H.H., 1998). Другие – что 5β-ДГП может 

ингибировать сократимость миометрия посредством активации Х-

рецепторов прегнана (Mitchell B.F., 2005). Такая активация повышает 

работу индуцибельной NO-синтазы – мощного релаксанта гладкой му-

скулатуры. Burger K. и соавт. (1999), однако, показали, что 5β-ДГП спо-

собен ингибировать лиганд-индуцированный кальциевый сигнальный 

путь в миометрии человека, что эквивалентно действию прогестерона, и 

оба они проявляли большую активность, чем другие стероиды, такие как 

прегненолон, эстрадиол и дигидроэпиандростерон.  

Большинство исследователей считают, что, несмотря на существо-

вание доказательств токолитического эффекта 5β-ДГП, механизм его 

действия вряд ли основан на связывании рецепторов окситоцина. 5β-

прегнан-3,20-дион является мощным лигандом для PXR-рецепторов (X 

рецепторы прегнана) и CAR-рецепторов (конститутивные рецепторы 

андростанов) (Jin Y. et al., 2011). Действуя через PXR 5β-ДГП может 

увеличивать активность/экспрессию индуцибельной NO-синтазы. В этой 

связи предполагается, что вместе с прогестероном, 5β-прегнан-3,20-

дион поддерживает адекватное кровообращение в плаценте, пупочных 

артериях и венах (Sheehan P. M. et al., 2005).  

Еще в середине прошлого века в плаценте был идентифицирован 

5β-прегнандиол (Cooke D. et al., 1967), образующийся под действием 5β-

редуктазы (AKR1D1) путем редукции кетогрупп в положениях C3 и C20, 

а также двойной связи дельта-4. Этот стероид считается конечным про-

дуктом инактивации прогестерона. Большинство исследователей при-

держивается мнения, что его образование служит для регуляции кон-

центрации прогестерона. Подтверждено наличие плодного метаболизма 

этого стероида. Прегнандиол является субстратом для фермента – глю-

коронил-трансферазы (Francis F.E., Kinsella R.A.Jr., 1966). В дальнейшем 

отмечаются только единичные исследования этого стероида в организ-

ме. Установлено, что прегнандиол является сильным ингибитором мик-

росомального метаболизма ряда веществ, а именно, специфично фер-

мента Р450-IА (Bienvenu T., Pons G., Rey E., Thiroux G., Olive G., 1993). 

Прегнандиол (наряду с прегненолоном) стимулирует ионы кальция и 

активизирует фосфолипазу С (Blackmore P.F., 2008).  
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Большинство продуктов прогестероногенеза метаболизируется в 

плаценте, но часть из них может служить предшественниками для син-

теза нейроактивных стероидов плода. Рядом авторов выявлено, что в 

трофобласте плаценты, образующийся из прогестерона 5α-прегнан-3β/α-

ол-20-он является субстратом для формирования 5α-

дигидропрогестерона – мощного анестетика с анксиолитическими свой-

ствами (Dombroski R.A. et al., 1997). Ключевой нейроактивный стероид 

в период жизни плода – аллопрегненолон, образуется из 5α-

дигидропрогестерона, продуцируемого в плаценте 5α-редуктазой (Vu 

T.T., 2009). Во время беременности плацента фактически является ос-

новным источником этого гормона (McEvoy K. et al., 2018).  

Аллопрегненолон играет многогранную роль при развитии цен-

тральной нервной системы. Он является модулятором центральных ре-

цепторов γ-аминомасляной кислоты (GABAA), которые модифицируют 

целый ряд реакций. Нейростероиды участвуют в защите мозга плода от 

острой гипоксии, а также стресса. Аллопрегнанолон повышает актив-

ность хлоридных ионных канальцев нейронных мембран, обеспечивая 

анксиолитический (седативный) эффект, оказывает влияние на станов-

ление барорефлекса, поддерживает нормальный уровень апоптоза и 

увеличение миелинизации в конце беременности в головном мозге. 

Снижение доступности нейроактивных стероидов может способствовать 

к неблагоприятным последствиям в виде хронического стресса для моз-

га плода и новорожденного (Hirst J.J. et al., 2013; Reddy D.S., 2010). 

Также относительно недавно было установлено, что низкий уровень ал-

лопрегненолона во время беременности коррелирует с послеродовой 

депрессией (Osborne L.M. et al., 2017).  

Помимо вышеназванных стероидов в плаценте происходит транс-

формация прогестерона в 16-дегидропрогестерон, 4-прегнен-3,6,20-

трион (Pasqualini J.R., 2005), о биологическом значении которых извест-

но мало.  

Далее рассматриваются основные метаболиты прогестерона, кото-

рые были гистохимически исследованы в ранней и зрелой плаценте при 

физиологическом течении беременности и при обострении ЦМВ инфек-

ции. Одним из основных 5β-метаболитов прогестерона в плаценте явля-

ется 5β-дигидропрогестерон (Chen M. et al., 2011).  
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Пример гистохимической реакции на 5β-дигидропрогестерон и 

распределение продуктов реакции в трофобластах ворсин хориона на 

сроке 6 недель беременности при физиологическом ее течении и 

обострении ЦМВ инфекции представлено на рисунках 8 и 9.  

 

 

 

 

Рис. 8. Ворсинчатый хорион. 6 нед. 

беременности. Физиологическое 

течение беременности. Интенсив-

ность гистохимической реакции на 

5β-дигидропрогестерон высокая. 

Увел. 15х40. 
 

 

 

 

 

Рис. 9. Ворсинчатый хорион. 6 нед. 

беременности.  Обострение ЦМВ 

инфекции на сроке 3 нед. Интен-

сивнось гистохимической реакции 

на 5β-дигидропрогестерон низкая. 

Увел. 15х40. 
 

 

При цитофотометрическом анализе выявлено уменьшение средних 

показателей 5β-дигидропрогестерона в тробобластах ворсин  плаценты 

от женщин с обострением ЦМВ инфекции на сроке 4-6 недель до 14,49 

± 0,658 пиксель/мкм2 (р<0,001), на сроке 7-8 недель – до 22,55 ± 1,515 

пиксель/мкм2 (р<0,001), на сроке 9-10 недель – до 29,97 ± 2,293 пик-

сель/мкм2 (р<0,001), в зрелых плацентах на сроке 37-38 недель– до 37,70 

± 2,453 пиксель/мкм2 (р<0,01) (физиологическое течение беременности 

– 27,05 ± 1,053 пиксель/мкм2, 33,53 ± 1,707 пиксель/мкм2, 40,19 ± 2,986 

пиксель/мкм2 и 49,92 ± 3,002 пиксель/мкм2 соответственно).  

Следует отметить, что данная реакция имеет особое значение для 

сохранения и поддержания беременности, так как 5β-дигидро-

прогестерон является ключевым посредником проведения эффектов 
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прогестерона (Byrns M.C., 2006, Hill M. et al., 2011, Sheehan P.M., 2006). 

Он поддерживает тонус миометрия в состоянии покоя, причем он обла-

дает самым мощным токолитическим действием среди всех стероидных 

гормонов (Kubli-Garfias C. et al., 1979; Thornton S., 1999). Считается, что 

снижение содержания 5β-дигидропрогестерона в конце физиологиче-

ской беременности способствует началу родов (Byrns M.C., 2006, 

Sheehan P.M. et al., 2005; Sheehan P.M., 2006). Тогда как критически низ-

кие показатели метабролита свидетельствуют о развитии угрожающих 

состояний беременности (Byrns M.C., 2014).  

Следующим функционально активным метаболитом прогестерона 

в плаценте является 20α-дигидропрогестерон. На рисунках 10 и 11 при-

веден пример гистохимической реакции на 20α-дигидропрогестерон в 

ворсинах хориона на сроке 6 недель беременности при физиологиче-

ском ее течении и обострении цитомегаловирусной инфекции.  

 

 

 

 

Рис. 10. Ворсинчатый хорион. 6 

нед. беременности. Физиологиче-

ское течение беременности. Ин-

тенсивность гистохимической ре-

акции на 20α-дигидропрогестерон 

высокая.  Увел. 15х40. 

 

 

 

 

 

Рис. 11. Ворсинчатый хорион. 6 

нед. беременности.  Обострение 

ЦМВ инфекции на сроке 3 нед.  

Интенсивнось гистохимической 

реакции на 20α-дигидропро-

гестерон низкая. Увел. 15х40. 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Byrns%20MC%5BAuthor%5D&cauthor=true&cauthor_uid=23410596
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При анализе цитофотометрических показателей 20α-

дигидропрогестерона установлено значимое его уменьшение на сроке 

беременности 4-6 недель до 10,19 ± 0,776 пиксель/мкм2 (р<0,001), на 

сроке 7-8 недель – до 12,81 ± 1,009 пиксель/мкм2 (р<0,001), на сроке 9-10 

недель – до 17,93 ± 1,561 пиксель/мкм2 (р<0,001), в зрелой плаценте на 

сроке 37-38 недель– до 28,44 ± 1,980 пиксель/мкм2 (р<0,001) (физиоло-

гическое течение беременности – 19,44 ± 1,554 пиксель/мкм2, 24,21 ± 

1,420 пиксель/мкм2, 29,69 ± 2,228 пиксель/мкм2 и 37,12 ± 2,572 пик-

сель/мкм2 соответственно), что также свидетельствовало о низкой про-

гестагенной активности трофобласта ранней и зрелой плаценты, форми-

руемой при обострении ЦМВ инфекции.  

Гистохимические исследования метаболической активности ко-

нечного продукта преобразования прогестерона – 5β-прегнан-3α,20α-

диола в трофобласте ворсин хориона в ранней и зрелой плаценте пока-

зали, что его цитофотометрические показатели при обострении ЦМВ 

инфекции имеют достоверно низкие значения по сравнению с физиоло-

гическим течением беременности.  

В трофобластах ворсин хориона на сроке 4-6 недель средние пока-

затели составили 10,96 ± 0,681 пиксель/мкм2 (р<0,001), на сроке 7-8 

недель – 12,22 ± 1,024 пиксель/мкм2 (р<0,001), на сроке 9-10 недель – 

24,43 ± 1,871 пиксель/мкм2 (р<0,001), в зрелой плаценте – 30,60±2,944 

пиксель/мкм2 (р<0,01) (физиологическое течение беременности – 20,51 ± 

1,838 пиксель/мкм2, 26,16 ± 1,333 пикселей/мкм2, 35,61 ± 2,348 пик-

сель/мкм2 и 41,14 ± 2,667 пиксель/мкм2 соответственно).  

На рисунках 12 и 13 представлен пример гистохимической реак-

ции на 5β-прегнан-3α,20α-диол в трофобластах ворсин хориона на сроке 

6 недель беременности при физиологическом ее течении и обострении 

ЦМВ инфекции. 

Следует отметить, что прогестерон может преобразовываться и  в 

5α-прегнан-3β/α-ол-20-он под действием 5α-редуктазы. Гистохимиче-

ское исследование показало, что интенсивность реакции на 5α-прегнан-

3β/α-ол-20-он в трофобластах ворсинчатого хориона в ранней и зрелой 

плацентах при обострении ЦМВ инфекции снижена по сравнению с фи-

зиологическим течением беременности. Цитофотометрические показа-

тели 5α-метаболита прогестерона в ворсинчатом хорионе на сроке 4-6 

недель составили 12,49±0,901 пиксель/мкм2 (р<0,001), на сроке бере-
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менности 7-8 недель – 23,81±1,173 пиксель/мкм2 (р<0,001), на сроке 9-10 

недель – 22,29±2,007 пиксель/мкм2 (р<0,001), в зрелой плаценте на сроке 

37-38 недель – 27,59±2,117 пиксель/мкм2 (р<0,001) (физиологическое 

течение беременности – 17,45±1,003 пиксель/мкм2, 26,16±1,333 пик-

сель/мкм2, 29,21±2,558 пиксель/мкм2 и 34,22±2,239 пиксель/мкм2 соот-

ветственно).  

 

 

 

Рис. 12. Ворсинчатый хорион. 6 нед. 

беременности. Физиологическое 

течение беременности. Интенсив-

ность гистохимической реакции на 

5β-прегнан-3α,20α-диол высокая. 

Увел. 15х40. 

 

 

 

 

 

Рис. 13. Ворсинчатый хорион. 6 

нед. беременности. Обострение 

ЦМВ инфекции на сроке 3 нед. Ин-

тенсивнось гистохимической реак-

ции на 5β-прегнан-3α,20α-диола 

низкая. Увел. 15х40. 

 

 

На рисунках 14 и 15 представлен пример гистохимической реак-

ции на 5α-прегнан-3β/α-ол-20-он в трофобластах ворсин хориона на сро-

ке 6 недель беременности при физиологическом ее течении и обостре-

нии ЦМВ инфекции.  

На основании результатов нашего исследования и данных мировой 

литературы, можно заключить, что низкие значения 5α-прегнан-3β/α-ол-

20-она в ранней и зрелой плаценте могут являться предикторами нару-

шения образования 5α-дигидропрогестерона, что влечет за собой разви-

тие патологических процессов не только у беременных женщин (Belelli 
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D. et al., 2019; Brunton P.J. et al., 2014), но и приводить к осложнениям 

беременности (Byrns M.C., 2011; Hill M. et al., 2011; Osborne L.M. et al., 

2017; Steckelbroeck S. et al., 2004). 

 

 

 

 

Рис. 14. Ворсинчатый хорион. 6 

нед. беременности. Физиологиче-

ское течение беременности. Ин-

тенсивность гистохимической ре-

акции на 5α-прегнан-3β/α-ол-20-он 

высокая. Увел. 15х40. 

 

 

 

 

 

Рис. 15. Ворсинчатый хорион. 6 

нед. беременности. Обострение 

ЦМВ инфекции на сроке 3 нед. Ин-

тенсивность гистохимической ре-

акции на 5α-прегнан-3β/α-ол-20-он 

снижена. Увел. 15х40. 

 

 

На рисунке 16 представлены возможные исходы беременности в 

зависимости от состояния метаболизма прогестерона, который включает 

синтез и его преобразование.  

В случае адекватного синтеза прогестерона образуется PIBF в ко-

личестве необходимом для поддержания иммунносупресии за счет пре-

обладания Th2-ответа, что трансформацию NK-клеток в LAK-клетки, 

обладающие способностью разрушать клетки трофобласта. Все это спо-

собствует нормальному течению беременности и родоразрешению в 

срок. В случае дефицита прогестерона, который был отмечен как в сы-

воротке крови у беременных женщин в первом и третьем триместрах 

беременности, так и в ранней и зрелой плаценте, возможно развитие по-
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вышенной цитотоксичности NK-клеток с преобладанием цитокинов 

Th1, поддерживающих системные и локальные воспалительные реак-

ции. Активация системы коагуляции при воспалении приводит наруше-

нию микроциркуляции и тромбозам, что нарушает кровоснабжение пло-

да и приводит к задержке его роста и развития, антенатальной гибели.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 16. Зависимые от метаболизма прогестерона исходы  

беременности. 

 

Как уже неоднократно сообщалось выше, прогестерон в плаценте 

превращается в два основных метаболита: 5β-дигидропрогестерон и 

20α-дигидропрогестерон. В том случае, если процесс преобразований 

прогестерона протекает в достаточном объёме, то наблюдается сохране-

ние тонуса матки в состоянии покоя за счет супрессии системы кальций-

кальмодулин-MLCK, ингибирования синтеза простагландинов и моду-

ляции аффинности окситоциновых рецепторов. Снижение прогестаген-

ной активности плаценты вследствие уменьшения количества метоболи-

тов ведет к увеличению риска угрозы прерывания беременности. 
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Таким образом, подавление прогестроногенеза в плаценте при 

обострении ЦМВ инфекции может быть использовано как прогностиче-

ский фактор исходов беременности. 

 

 

Роль андрогенов в организме 

 

До некоторой степени поразительным кажется тот факт, что есте-

ственный путь превращения холестерина в женские половые гормоны в 

качестве обязательной стадии включает образование андрогенов. У 

женщин андрогены синтезируются в яичниках, надпочечниках и в жи-

ровой ткани, а при наступлении беременности – в фетоплацентарной си-

стеме. Андрогены, таким образом, являются основными предшествен-

никами эстрогенов. Кроме того, что они является субстратом для синте-

за других стероидов, имеются свидетельства о том, что этим веществам 

присущи свои собственные функции. 

Адрогеновые стероиды оказывают свое биологическое действие 

практически на все ткани. Они играют ключевую роль в регуляции ре-

продуктивного тракта, включая яичники и эндометрий, а также функци-

онально влияют на почки, печень, кости, мышцы, головной мозг и пове-

дение (Snyder B. et al., 2018). У женщин андрогены вовлечены в регуля-

цию фолликулогенеза. Андрогены являются преобладающими стерои-

дами, производимыми в начале фолликулярной развития, они присут-

ствуют в высоких концентрациях в фолликулярной жидкости на всех 

этапах роста фолликула (Hickey T.E. et al., 2004; Hiller S.G., Tetsuka M., 

1997; Prizant H. et al., 2014; Walters K.A., 2015). 

Одним из андрогеновых гормонов, которому уделяется большое 

внимание исследователей, является ДЭА (Klinge C.M. et al., 2018). Он 

впервые был выделен в 1934 году и вплоть до 90-х годов ХХ века счи-

тался предшественником в системе синтеза тестостерона и андростен-

диона у мужчин и эстрогенов у женщин (Кушлинский Н.Е., Дегтярь 

В.Г., 2005). В последние же годы было выяснено, что этому веществу 

присущи многие функции. Имеются свидетельства о том, что это веще-

ство обладает способностью оказывать влияние на ЦНС. Установлено, 

что нервная ткань захватывает дегидроэпиандростерон лучше, чем дру-

гие ткани. ДЭА и его метаболиты получили название нейростероиды, 

http://www.biolreprod.org/search?author1=T.E.+Hickey&sortspec=date&submit=Submit
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осуществляющие несколько жизненных нейрофизиологических функ-

ций, включая регулирование нейронной возбудимости. Имеются данные 

о влиянии этого стероида на иммунную систему. Показано, что введение 

ДЭА увеличивает как цитотоксичность NK-клеток, так и их количество. 

Было высказано предположение о иммуномоделирующем эффекте ДЭА. 

Дегидроэпиандростерон обладает ярко выраженным антиглюкокорти-

коидным действием. Дегидроэпиандростерон способствует повышению 

уровня оксида азота (Гончаров Н.П., Кация Г.В., Нижник А.Н., 2004; 

Гончаров Н.П., Кация Г.В., Нижник А.Н., 2006; Марова Е.И., Лапшина 

А.М., 2006; Селедцова Н.В., Хонина Н.А., Пасман Н.М. и др., 2007). 

В настоящее время в литературе продолжает дискутироваться во-

прос о диапазоне предполагаемых действий этого вещества: влияние на 

функции ЦНС, сердечно-сосудистую и иммунную системы, антиканце-

рогенный эффект, снижение массы тела, профилактику остеопороза и 

так далее (Prough R.A. et al., 2016).  

Проведенные исследования позволяют рассматривать несколько 

механизмов (Clark B.J. et al., 2018), через которые ДЭА оказывает свое 

действие: а) неконкурентное ингибирование глюкозо-6-

фосфатдегидрогеназы; б) регуляция деятельности ферментов или биоре-

гуляторных факторов и их рецепторов, например, эноил-КоА-гидратазы, 

карбомилфосфатсинтетазы, глицерол-3-фосфат-дегидрогеназы, Т-

клеточный рецептор к IgD, цитокины; в) регуляция экспрессии генов, 

например, цитохрома Р450s, НАДФН-цитохром Р-450-редуктазы, ацил-

КоА-оксидазы; г) антагонистическое действие к рецептору γ-

аминомаслянной кислоты и агонистичесое к NMDA-рецептору в ЦНС 

(Роживанов Р.В., Вакс В.В., 2005; Bergeron R., de Montigny C., Debonnel 

G., 1996; Labrie F., 2006; Labrie F., Luu-The V., Belanger A. et al., 2005; 

Zwain I.H., Yen S.S.C., 1999). Возможна также реализация его биологиче-

ского эффекта через многочисленные метаболиты ДЭА (тестостерон, 

эстрадиол, андростерон, андростендиол, 7α-ОН-ДЭА, этиохоланолон и 

др.) (Гончаров Н.П., 2006). ДЭА способен изменять баланс кортикосте-

роидов (через комплекс гипоталамус-аденогипофиз). Этот стероид сни-

жает активность серотонинэргической, норадреналинергической и/или 

дофаминергической передачи, приводя к повышению уровня серотонина 

и дофамина в структурах головного мозга. 
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Андрогены и их рецепция в организме 

 

Адрогеновый эффект реализуется, когда свободные андрогены 

проникают в клетку и связываются со специфическим белком – андро-

геновым рецептором (AR) (Gelmann E.P., 2002; Horie K. et al., 1992). 

Примечательно, что только тестостерон и дигидротестостерон (ДГТ) 

могут связываться непосредственно с AR, а для того, чтобы другие ан-

дрогеновые метаболиты могли оказывать андрогенное воздействие че-

рез AR необходимо их преобразование в тестостерон и/или ДГТ (Walters 

K.A., 2015). Рецепторы андрогенов относятся к суперсемейству ядерных 

рецепторов и являются факторами транскрипции. Взаимодействуя с ге-

номом внутри ядра, они инициируют специфический клеточный ответ, 

проявляющийся в виде каскада различных биохимических процессов, 

конечным этапом которых является активация биогенеза рибо-/полисом 

и синтеза белков. Такой ответ называется геномным. Классическая мо-

дель гормональной регуляции биологических функций сложилась исто-

рически, но на протяжении последних двух десятилетий многочислен-

ные эксперименты показали, что кроме геномного существует и неге-

номное (быстрое) действие андрогенов, независящее от транскрипции 

генов (Lang F. et al., 2013). Негеномное действие андрогенов включает 

взаимодействие с клеточными мембранами, например, через ионные ка-

налы или мембранные рецепторы, связанные с ферментами (Foradori et 

al., 2008). 

Андрогены являются посредником биологических эффектов для 

всевозможных клеточных механизмов, включая пролиферацию, диффе-

ренцировку и гомеостаз. Для осуществления этих эффектов андрогены 

способствуют активации различных механизмов. Одним, из них являет-

ся взаимодействие с факторами роста. Андрогены повышают экспрес-

сию мРНК инсулиноподобного фактора роста -1 и его рецептора (Hickey 

T.E. et al., 2004; Prizant H., 2014; Vendola K. et al., 1999). В функцию это-

го белка входит регуляция процессов роста, развития и дифференциров-

ки клеток, он участвует в развитии плаценты и плода и имеет большое 

значение при беременности. Андрогены индуцируют опосредованную 

матриксной металлопротеиназой трансактивацию мембраного рецепто-

ра эпидермального фактора роста (Walters K.A., 2015). EGF стимулирует 

http://humbio.ru/humbio/cell_sign3/000428ba.htm
http://humbio.ru/humbio/cell_sign3/000428ba.htm
https://ru.wikipedia.org/wiki/%D0%A4%D0%B0%D0%BA%D1%82%D0%BE%D1%80%D1%8B_%D1%82%D1%80%D0%B0%D0%BD%D1%81%D0%BA%D1%80%D0%B8%D0%BF%D1%86%D0%B8%D0%B8
http://www.biolreprod.org/search?author1=T.E.+Hickey&sortspec=date&submit=Submit
http://joe.endocrinology-journals.org/search?author1=Hen+Prizant&sortspec=date&submit=Submit
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клеточный рост и клеточную дифференцировку и играет важную роль в 

эмбриональном развитии. 

Андрогены повышают уровень рецептора фолликулостимулиру-

ющего гормона (Prizant H., 2014). Но влияние гормонов не ограничива-

ется этим. Было выявлено, что андрогены повышают ФСГ-

индуцированное действие цАМФ (Hiller S.G., Tetsuka M., 1997) и тем 

самым оказывают содействие гонадотропину в обмене холестерина, 

секреции прогестерона, экспрессии ферментов стероидогенеза, и индук-

ции активности ароматазы (Hickey T.E. et al., 2004).  

Андрогены стимулируют продукцию прогестерона. При исследова-

нии беременности у крыс было обнаружено, что андрогены действовали 

непосредственно, не через преобразование в эстрадиол, и эффекты ан-

дрогенов не были опосредованы внутриклеточными AR (Thordarson G. et 

al., 1997). В противоположность этому, в работе, посвященной изучению 

роли андрогенов в фолликулогенезе, было выявлено ингибирование сек-

реции прогестерона андрогенами (Hickey T.E. et al., 2004). Вполне веро-

ятно, что влияние этих гормонов различается в разных тканях. 

Реализация действия андрогенов осуществляется через различные 

вторичные посредники. Андрогены могут взаимодействовать с механиз-

мами, регулирующими внутриклеточный кальций (Foradori C.D. et al., 

2008; Guo Z. et al., 2002). Ca2+ – вторичный мессенджер для широкого 

спектра клеточных процессов, в том числе пролиферации клеток, апопто-

за, подвижности и экспрессии генов (Berridge M.J. et al., 1998). Функцио-

нальная значимость андроген-индуцированной Ca2+ сигнализации еще не 

полностью исследована. В настоящее время изучается несколько неге-

номных механизмов влияния андрогенов на концентрацию Ca2+:  

1. Андрогены взаимодействуют с мембраносвязанным рецеп-

тором андрогенов (mAR), что приводит к активации кальциевых кана-

лов L-типа посредством белка G. Данное увеличение концентрации 

внутриклеточного Ca2+ может привести к стимулированию протеинки-

назы C, а также, через кальмодулин может активировать протеинкиназу 

А и МАРК-сигнальный путь, что в конечном счете, повлияет на тран-

скрипцию генов посредством фосфорилирования.  

2. Андрогены взаимодействуют с mAR, что приводит к моду-

ляции активности G-белков и последующей активации фосфолипазы С. 

http://joe.endocrinology-journals.org/search?author1=Hen+Prizant&sortspec=date&submit=Submit
http://www.biolreprod.org/search?author1=T.E.+Hickey&sortspec=date&submit=Submit
http://www.biolreprod.org/search?author1=T.E.+Hickey&sortspec=date&submit=Submit
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В результате увеличивается концентрация инозитол-1,4,5-трифосфата, 

что высвобождает Ca2+ из саркоплазматического ретикулума и, следова-

тельно, активирует передачу сигнала по RAS/MEK/ERK пути. RAS – 

семейство генов, кодирующих так называемые малые G-белки (малые 

ГТФазы), участвующие в первых этапах передачи сигнала. МЕК – ос-

новной компонент вышеупомянутого МАРК-сигнального пути, являю-

щегося ключевым регулятором клеточной пролиферации и выживания.  

3. 3α-андростендиол может взаимодействовать с GABAA, что 

повышает концентрацию внутриклеточного кальция и, таким образом, 

приводит к увеличению мембранного потенциала.  

4. Андрогены могут взаимодействовать с фосфолипидами в 

мембранном бислое, меняя пластичность мембраны и как следствие – 

функцию Na+/K+ и Ca2+-АТФаз. 

Подобно кальцию, андрогены активируют и другие вторичные ме-

сенджеры. Существует множество доказательств активации андрогена-

ми цАМФ и протеинкиназы А (Foradori C.D. et al., 2008; Hiller S.G., Tet-

suka M., 1997; Hillier S.G., de Zwart F.A., 1982; Prizant H., 2014). Как уже 

упоминалось выше, андрогены стимулируют работу инозитол-1,4,5-

трифосфата. Рецептор андрогенов активирует тирозинкиназу c-Src. С-

Src через активацию каскада MAPK участвует в нескольких клеточных 

процессах, включая миграцию, пролиферацию и дифференцировку (Fo-

radori C.D. et al., 2008). Что касается еще одного вторичного мессендже-

ра – NO, то в литературе встречаются данные о том, что андрогены 

ослабляют продукцию оксида азота (Guo Z. et al., 2002; Foradori C.D. et 

al., 2008). 

Для реализации своего действия гормоны способны активировать 

внутриклеточные сигнальные механизмы. Андрогены действуют через 

сигнальный путь FOXO3a, состоящий из ферментов фосфоинозитид-3-

киназы, протеинкиназы В и фактора транскрипции: PI3K/Akt/Forkhead 

box 3a (FOXO3a) (Yang et al. 2010). Данные гормоны также способству-

ют активации сигнального каскада МАРК, включающего ERK (Zhu X., 

1999), c-Src киназу (Thomas SM, Brugge JS., 1997; Schlessinger J. 2000), 

тем самым индуцируя передачу сигнала по пути: Src/Raf/ERK. В по-

следнее время было обнаружено, что андрогены активируют вышеупо-

мянутый сигнальный путь с помощью опосредованной MMP трансакти-

http://joe.endocrinology-journals.org/search?author1=Hen+Prizant&sortspec=date&submit=Submit
https://ru.wikipedia.org/wiki/%D0%A4%D0%B5%D1%80%D0%BC%D0%B5%D0%BD%D1%82%D1%8B
https://ru.wikipedia.org/wiki/%D0%A4%D0%BE%D1%81%D1%84%D0%BE%D0%B8%D0%BD%D0%BE%D0%B7%D0%B8%D1%82%D0%B8%D0%B4-3-%D0%BA%D0%B8%D0%BD%D0%B0%D0%B7%D0%B0
https://ru.wikipedia.org/wiki/%D0%A4%D0%BE%D1%81%D1%84%D0%BE%D0%B8%D0%BD%D0%BE%D0%B7%D0%B8%D1%82%D0%B8%D0%B4-3-%D0%BA%D0%B8%D0%BD%D0%B0%D0%B7%D0%B0
https://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%82%D0%B5%D0%B8%D0%BD%D0%BA%D0%B8%D0%BD%D0%B0%D0%B7%D0%B0_B
http://www.ncbi.nlm.nih.gov/pubmed/?term=Zhu%20X%5BAuthor%5D&cauthor=true&cauthor_uid=10432237
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вации рецепторов EGF (Sen A. et al. 2010, 2012, 2014). Эти наблюдения 

дали основания для гипотезы, что внеядерное действие андрогенов 

очень похоже на действие факторов роста (Prizant H., 2014).  

Важным медиатором андроген-индуцированной активации ERK 

является белок адаптер мульти-доменов, называемый паксиллин (PXN). 

Традиционно считается, что PXN регулирует ремоделирование и коор-

динационные функции сцепления цитоскелета (Sen A. et al. 2010, 2012, 

2014). Кроме того, PXN служит в качестве связующего звена между вне-

ядерной сигнализацией и ядерной транскрипцией в ответ на андрогены 

(Sen A. et al. 2012). Данные сигнальные пути являются одними из уни-

версальных последовательностей передачи информации в клетке. Они 

отвечают за транскрипцию генов, метаболизм, рост, пролиферацию, 

дифференциацию и другие клеточные процессы (Foradari C.D., 2008). 

Имеются исследования, касающиеся влияния андрогенов на рабо-

ту не только ферментов, участвующих в передаче сигнала через вторич-

ные мессенджеры и путем каскадов, но и на другие различные энзимы. 

Это стимуляция некоторых ферментов стероидогенеза: ароматазы и 

P450scc (Prizant H., 2014). Тем самым осуществляется регуляция про-

дукции стероидных гормонов. Японские исследователи сообщали об ак-

тивации циклооксигеназы-2 (Yazawa T. et al., 2013) – фермента, участ-

вующего в синтезе простагландинов – самых известных клеточных ме-

диаторов воспаления. При изучении роли андрогенов в фолликулогенезе 

было обнаружено, что потеря AR сигнализации приводит к снижению 

экспрессии синтазы гиалуроновой кислоты – гиалуронан-синтазы-2 

(Walters K.A., 2015). Гиалуронан-синтаза являются мембранным фер-

ментом, который используют UDP-α-N-ацетил-D-глюкозамин и UDP-α-

D-глюкуроновую кислоту в качестве субстратов для получения глико-

заминогликанов. Все вышеизложенные данные свидетельствуют о том, 

что андрогены принимают участие в регуляции самых различных про-

цессов в организме. 

Несмотря на то, что влиянию андрогенов на репродуктивное здо-

ровье женщины посвящено много исследований, их роль для сохране-

ния беременности остается мало изученной. 

 

http://joe.endocrinology-journals.org/content/222/3/R141.full#ref-60
http://joe.endocrinology-journals.org/content/222/3/R141.full#ref-61
http://joe.endocrinology-journals.org/content/222/3/R141.full#ref-62
http://joe.endocrinology-journals.org/search?author1=Hen+Prizant&sortspec=date&submit=Submit
http://joe.endocrinology-journals.org/content/222/3/R141.full#ref-60
http://joe.endocrinology-journals.org/content/222/3/R141.full#ref-61
http://joe.endocrinology-journals.org/content/222/3/R141.full#ref-62
http://joe.endocrinology-journals.org/search?author1=Hen+Prizant&sortspec=date&submit=Submit


________________________  Глава II _______________________ 

60 

 

Андрогены при беременности 

 

Рядом исследователей показано повышение уровня андрогенов в 

крови женщины в период беременности (Mizuno M. et al., 1968; Rivarola 

M.A. et al., 1968; Saez J.M. et al., 1972; Dawood M.Y., Saxena B.B., 1977; 

Buster J.E. et al., 1979; Bammann B.L. et al., 1980).  

Примечательно, что изменение концентрации различных видов 

гормонов происходит по-разному. Значительный рост общего тестосте-

рона отмечается с первого триместра беременности (Saez J.M. et al., 

1972; Bammann B.L. et al., 1980; Berger N.G. et al., 1984). Уровень сво-

бодного тестостерона увеличивается только в третьем триместре 

(Dawood M.Y., Saxena B.B., 1977). Количество андростендиона суще-

ственно увеличивается в конце беременности (Mizuno M. et al., 1968). 

Количество дегидроэпиандростерон сульфата (ДЭАС) повышается в 

начале беременности, а потом (к концу) падает до ~ 50% (Milewich L. et 

al., 1978). Существует мнение, что увеличение продукции андрогенов во 

время беременности, происходит за счет матери, а у плода их перифери-

ческая концентрация остается низкой (Braunstein G.D., 1985). 

У плода уровень андрогенов зависит от пола и срока беременности 

(Makieva S. et al., 2014). Так, количество тестостерона в крови больше у 

плодов мужского пола. Количество дигидротестостерона примерно оди-

наково у обоих полов. Уровень ДЭАС в пуповинной крови плодов муж-

ского пола выше, чем у плодов женского пола, уровень андростендиона 

приблизительно одинаков. Связь между полом плода и уровнями андро-

генов, тестостерона или андростендиона, в сыворотке и амниотической 

жидкости плода, согласуется с биосинтезом андрогенов в клетках Лей-

дига фетального яичка (Scott H.M. et al., 2009). 

Итак, количество некоторых андрогенов увеличивается во время 

беременности. Влияние повышения уровня гормонов на течение бере-

менности в настоящее время полностью не объяснено. Однако считает-

ся, что увеличение количества андрогенов необходимо для регулирова-

ния ключевых процессов в период беременности и родов (Makieva S. et 

al., 2014). Полагают, что андрогены нужны для подготовки шейки матки 

к родам. Кроме того, ряд исследователей выделяют потенциальную роль 

этих гормонов в релаксации (расслаблении) миометрия через негеном-

ный и независимый от рецепторов механизм. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Braunstein%20GD%5BAuthor%5D&cauthor=true&cauthor_uid=4018276
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Децидуализация – это дифференциация и пролиферация стро-

мальных клеток матки (Gellersen B., Brosens J.J., 2014). Децидуализация 

сопровождается усилением ангиогенеза и инфильтрации лейкоцитов. 

Она характеризуется скоординированной экспрессией специфических 

наборов генов, в том числе кодирующих факторы роста, таких как про-

лактин и белок-1, связывающий IGF (IGFBP1), и характеризуется мор-

фологическим превращением фибробластных стромальных клеток в де-

цидуальные клетки. Децидуальные клетки намного крупнее стромаль-

ных фибробластов с округлыми ядрами, большим числом ядрышек, 

расширенным секреторным аппаратом, увеличенной шероховатой эндо-

плазматической сетью и аппаратом Гольджи и заметным накоплением 

гликогена в цитоплазме. Децидуальные клетки сохраняются во время 

беременности и образуют материнский компонент плаценты – decidua 

basalis. Имплантация эмбрионов, плацентация и установление беремен-

ности зависят от адекватной децидуализации. 

Было показано, что экзогенное добавление андрогенов влияет на 

децидуализацию. Секреция маркера децидуализации – пролактина зна-

чительно увеличивается в клетках матки человека, обработанных андро-

генами, во время децидуализации in vitro (Gibson D.A. et al., 2016). В 

экспериментах на мышиной модели присутствие андрогенов усиливало 

процесс децидуализации, при этом увеличивался вес децидуомы, и по-

вышалась активность щелочной фосфатазы еще одного маркера дециду-

ализации (Zhang X., Croy B.A., 1996). AR имеет частично перекрываю-

щиеся функции с рецептором прогестерона, они способны связывать 

одни и те же элементы ответа и регулировать подмножества одних и тех 

же генов (Yen P.M. et al., 1997).  

In vitro при децидуализации клеток матки человека с целевым 

нокдауном либо PR, либо AR, был идентифицирован набор генов, регу-

лируемый только AR, участвующим в организации цитоскелета, по-

движности клеток и регуляции клеточного цикла. AR-зависимая переда-

ча сигналов регулирует полимеризацию F-актина и образование стрес-

совых волокон, необходимых для приобретения подвижного фенотипа 

децидуальных клеток (Gibson D.A. et al., 2016). Кроме того, андрогены 

повышают устойчивость к окислительному стрессу во время децидуали-

зации in vitro посредством регуляции экспрессии супероксиддисмутазы 

2. Регуляция экспрессии супероксиддисмутазы 2 может контролиро-
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ваться с помощью белка FOXO1 – транскрипционного фактора, активи-

руемого в присутствии андрогенов (Kajihara T. et al., 2012). В децидуа-

лизированном эндометрии клетки образуют щелевые контакты для об-

мена небольшими молекулами, нарушение формирования которых серь-

езно влияет на децидуализацию и исходы беременности. Андрогены 

увеличивает экспрессию белка коннексин-43, структурного компонента 

щелевых соединений, в децидуализированных клетках человека, что со-

провождалось изменением ультраструктурных особенностей клетки, 

включая расширение внутриклеточных органелл и накопление липид-

ных капель (Kajihara T. et al., 2014). В клетках эндометрия человека in 

vitro было обнаружено, что децидуализация зависела от изменения ак-

тивности синтеза андрогенов. Блокирование передачи сигналов андро-

генов на уровне рецепторов вызывало серьёзные нарушения в тран-

скрипционном профиле клеток матки и приводило к значительному 

снижению экспрессии ключевых маркеров децидуализации – пролакти-

на и IGFBP1 (Gibson D.A. et al., 2016; Simitsidellis I. et al., 2018), что со-

гласуется с существенной ролью андрогенов во время децидуализации. 

Установление беременности включает прикрепление и импланта-

цию компетентной бластоцисты в рецептивный эндометрий, который 

обеспечивает физическую поддержку и питательное обеспечение во 

время беременности. Имплантация зависит от последовательного дей-

ствия половых стероидных гормонов: эстрогена и прогестерона. Хотя 

прогестерон управляет праймированием матки, экспериментальные ис-

следования на грызунах показывают, что именно эстроген необходим 

для имплантации. Поскольку андрогены являются предшественниками 

эстрогенов, то для успешного становления беременности имеет значе-

ние их баланс. Андрогены могут оказывать непосредственное влияние 

на имплантацию у грызунов. Недостаток андрогенов задерживает им-

плантацию эмбрионов, тогда как их избыток приводит к аберрантной 

экспрессии генов в местах имплантации в модели у мышей (Diao H.L. et 

al., 2008). Подобные механизмы были недавно исследованы в клеточных 

системах человека. Например, андрогены регулируют экспрессию мар-

керов восприимчивости эндометрия – секретируемого фосфопротеина 1, 

рецептора эндотелина типа B и моноаминоксидазы A, что подтверждает 

роль андрогенов в регуляции восприимчивости эндометрия (Gibson D.A. 

et al., 2016; Simitsidellis I. et al., 2018). 
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Ремоделирование шейки матки в период беременностии можно 

разделить на четыре стадии: размягчение (первый триместр), созревание 

(второй триместр), расширение (третий триместр) и реконструкция по-

сле родов (Read C.P. et al., 2007). Процесс изменения шейки матки ха-

рактеризуется уменьшением количества коллагена и протеогликанов и 

параллельным увеличением активности коллагеназы. Результаты мно-

гочисленных исследований (Mochizuki M. et al., 1978a, b; Sasaki et al., 

1982; Mochizuki M., Maruo T., 1985; Takahashi K. et al., 1984; Sakyo K. et 

al., 1986, 1987; Yamashita A. et al., 1991; El Maradny E. et al., 1996; Ka-

nayama N. et al., 1998; Ji H. et al., 2008) сформировали гипотезу, о том 

андрогены регулируют ремоделирование шейки матки, в частности ее 

«созревание» перед родами. Конкретные механизмы такого влияния ан-

дрогенов полностью не раскрыты. Исследования их продолжаются. В 

настоящее время известно, что 5α-редуктаза тип 1 является преоблада-

ющим ферментом в шейке матки в конце беременности (Mahendroo 

M.S., Russell D.W., 1999). Последнее открытие предполагает, что основ-

ным механизмом инициации процесса «созревания» является местное 

превращение андрогенов в более мощные метаболиты. 

Предоставлено достаточно доказательств того, что ДЭА, способ-

ствует «созреванию» шейки матки путем повышения активности колла-

геназы. Коллагеназа – фермент, представитель семейства металлопроте-

иназ, расщепляющий пептидные связи в определенных участках спира-

лизованных областей коллагена. Таким образом, андрогены, в частности 

ДЭА, способствуют уменьшению количества и организованности колла-

геновых волокон соединительной ткани. Есть основания полагать, что 

механизм влияния ДЭА на коллагеназу является косвенным и опосредо-

ван через стимуляцию ДЭА секреции протеолитических ферментов 

нейтрофилами (El Maradny E. et al., 1996; Maymon E. et al., 2000]. Была 

выявлена корреляция действия ДЭА с увеличением IL-8, который во-

влечен в хемотаксис нейтрофилов в шейке матки (Kanayama N. et al., 

1998; Maymon E. et al., 2000). 

Изучение миометрия позволило установить четыре стадии изме-

нений мышечных клеток миометрия во время беременности: пролифе-

ративная, синтетическая, контрактильная и стадия родов (Shynlova O. et 

al., 2009). Недавнее исследование показало, что AR имеют высокую сте-

пень выраженности в миометрии на пролиферативной стадии, и посте-
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пенно снижаются к концу беременности (Liu L. et al., 2013; Horie K. et 

al., 1992). Данный факт, по мнению авторов, предполагает влияние ан-

дрогенов в период роста миометрия. Кроме того, Liangliang Liu с соав-

торами показали, что андрогены блокируют работу рецептора IGF-1 и, 

следовательно, таким образом, снижают активность каскадов, в которых 

участвует IGF-1, включая внутриклеточный сигнальный путь PI3K/Akt, 

имеющую большое значение в пролиферативных процессах. Эти и дру-

гие данные (Slomczynska M. et al., 2008; Bethin K.E. et al., 2003) позволи-

ли сделать вывод, что андрогены вовлечены в процесс пролиферации 

при трансформации миометрия на ранних стадиях беременности.  

Андрогены способствуют расслаблению гладкой мускулатуры 

матки (Kubli-Garfias C. et al., 1980; Perusquia M. et al., 1991a, b; Perusquia 

M. et al., 2005), данный факт был показан при исследовании действия 

ДЭА, тестостерона, андростендиола, андростерона, андростендиона, 5α-

ДГТ, 5β-ДГТ у беременных и небеременных крыс. Гладкомышечные 

клетки миометрия могут сокращаться самопроизвольно (Tomiyasu B.A. 

et al., 1988), поскольку мембранный потенциал этих клеток не является 

стабильным. Во время беременности происходит спонтанная деполяри-

зация мембранного потенциала. Снижение мембранного потенциала вы-

зывает контрактильную активность клеток, и, наоборот, усиление мем-

бранного потенциала до 50 mV поддерживает состояние покоя в матке 

(Nakajima A., 1971; Pressman E.K. et al., 1988).  

Повышение мембранного потенциала осуществляется преимуще-

ственно за счет притока Ca2+, в то время как реполяризация происходит 

путем блокирования Ca2+ каналов. Биохимическим ключом для спон-

танных сокращений гладкомышечных клеток миометрия является уве-

личение внутриклеточной концентрации Ca2+ от 10-7 до 10-6 М, в резуль-

тате притока ионов Ca2+ извне и/или выхода Ca2+ из саркоплазматическо-

го ретикулума (Horowitz A. et al., 1996). Приток Ca2+ осуществляется че-

рез различные кальциевые каналы, классифицируемые как потенциал-

управляемые – VOCCs (voltage-operated Ca2+ channels) и рецептор-

управляемые – ROCCs (receptor-operated Ca2+ channels) (Wray S. et al., 

2003, 2005; Floyd R., Wray S., 2007; Noble K. et al., 2009). Выход Ca2+ из 

гладкомышечных клеток миометрия может произойти в результате рабо-

ты двух главных транспортеров: Ca2+АТФазы и Na2+/Ca2+ помпы (Shmigol 

A. et al., 1998). Обмен Ca2+ также сильно зависит от текучести мембраны, 



________________________  Глава II _______________________ 

65 

 

которая в норме увеличивается в гладкомышечных клетках миометрия к 

концу беременности и началу родов. 

Возможный механизм действия андрогенов на мышечную сокра-

тимость основан на воздействии на кальциевые каналы: VOCC и ROCC, 

липидный бислой, мембранные рецепторы и щелевые контакты. Пред-

полагают (Makieva S. et al., 2014), что андрогены ингибируют VOCC, 

тем самым способствуя снижению спонтанной сократимости миомет-

рия. Кроме VOCC, существует ряд доказательств, что андрогены могут 

блокировать ROCC. Авторы данной работы (Makieva S. et al., 2014) счи-

тают неверным, что андрогены оказывают свое действие через блоки-

ровку сигнального пути, включающего инозитол-1,4,5-трифосфат.   

Существует мнение, что андрогены могут проникать в липидный 

бислой и подобно холестерину уменьшать текучесть и пластичность 

плазматических мембран (Foradari C.D. et al., 2008; Makieva S. et al., 

2014). Была обнаружена способность андрогенов взаимодействовать с 

фосфолипидами мембраны, что может ухудшить гомеостаз Ca2+ из-за 

увеличения активности Ca2+АТФазы (Duval D. et al., 1983; Van Bommel 

T. et al., 1987). Регуляция андрогенами данного фермента задокументи-

рована при исследовании разных тканей, совокупность результатов ко-

торых позволила представить следующий негеномный механизм дей-

ствия: андрогены, проникая в липидный бислой, снижают текучесть 

мембраны, что приводит к увеличению активности Ca2+-АТФазы и от-

току Ca2+ из клетки (Makieva S. et al., 2014).  

Еще одним из способов, с помощью которых гормоны могут вы-

зывать расслабление миометрия является изменение проводимости сиг-

нала через щелевые контакты. Предполагают, что андрогены путем 

прямого взаимодействия с протеолипидной структурой мембраны, пря-

мо или косвенно могут изменять функцирование щелевых контактов 

(Makieva S. et al., 2014). 

У плода мужского пола андрогены необходимы для развития кле-

ток Сертоли и клеток Лейдига (O'Shaughnessy P.J. et al., 2009; Scott H.M. 

et al., 2007). На 7-8 недели беременностии клетки Лейдига начинают 

собственное производство андрогенов, которые способствуют развитию 

мужского репродуктивного тракта (Macleod D.J. et al., 2010; Welsh M. et 

al., 2008). У плода женского пола андрогены играют большую роль на 

начальных этапах фолликулогенеза (Gervásio C.G. et al., 2014). Андроге-

http://www.ncbi.nlm.nih.gov/pubmed/?term=O%27Shaughnessy%20PJ%5BAuthor%5D&cauthor=true&cauthor_uid=19059463
http://www.hindawi.com/72164564/
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ны участвуют в дифференцировки головного мозга. Считается, что в их 

отсутствие его развитие идет по женскому типу. Они влияют на те 

участки мозга, которые контролируют циклическую регуляцию секре-

ции гонадолиберина гипоталамусом и половое поведение (Гончаров 

Н.П., 1996). 

 

 

Синтез андрогенов в плаценте при физиологической и  

осложненной ЦМВ инфекцией беременности 

 

Тканевое происхождение и причины увеличения количества ан-

дрогенов в период беременности до настоящего времени остаются не-

выясненными. Предполагается, что рост концентрации гормонов связан 

с их продукцией яичниками или плацентой.  

Биосинтез андрогенов начинается с превращения холестерола в 

прегненолон, который в последующем конвертируется в ДЭА и андро-

стендион – предшественник эстрона и тестостерона. Тестостерон может 

метаболизироваться в различные андрогены, такие как 5α-дигидротесто-

стерон, 5β-дигидротестостерон, андростерон, 3α-андростендиол, 3β-

андростендиол. 3β-андростендиол может метаболизироваться в эстроге-

ны. Биосинтез андрогенов хорошо представлен в обзорах T.M. Penning 

(2010) и L. Schiffer (2018) (Penning T.M., 2010; Schiffer L. et al., 2018). 

Несмотря на преобладающую с 1960-х годов точку зрения (Pion R. 

et al., 1965; Siiteri P.K., MacDonald P.C., 1966), что плацента не имеет ме-

таболической возможности для производства андрогенов de novo, и ис-

пользует только андрогены, имеющие плодовое происхождение, недав-

ние исследования показали, что синцитиотрофобласт плаценты может 

синтезировать андрогены (Escobar J.C. et al., 2011). В частности, в син-

цитиотрофобласте обнаружен фермент CYP17, который преобразует 

C21 стероиды в C19 стероиды (Escobar J.C. et al., 2011). 

Нами были исследованы основные этапы образования андрогенов 

в ранней и зрелой плаценте при физиологической и осложненной ЦМВ 

инфекцией беременности.  

Одним из первых андрогенов в цепочке биосинтеза является ДЭА. 

В плаценте присутствует 3β-гидроксистероиддегидрогеназа, катализи-

рующая не только образование прогестерона из прегненолона, но анд-



________________________  Глава II _______________________ 

67 

 

ростендиона из ДЭА (Pasqualini J.R., 2005; Payne A.H., Hales D.B., 2004).  

Нами получены цитофотометрические показатели гистохимиче-

ской реакции на 3β-гидроксистероиддегидрогеназу в трофобластах вор-

син хориона в ранней и зрелой плаценте при обострении ЦМВ инфек-

ции, которые на сроке 4-6 недель составили 15,49±0,898 пиксель/мкм2 

(р<0,01), на сроке 7-8 недель – 21,93±2,313 пиксель/мкм2 (р<0,001), на 

сроке 9-10 недель – 28,29±2,367 пиксель/мкм2 (р<0,05) и на сроке 37-38 

недель – 32,54±3,677 пиксель/мкм2 (р<0,05), что ниже чем при физиоло-

гическом течении беременности (22,45±1,223 пиксель/мкм2, 30,87±1,273 

пикселей/мкм2, 39,29±2,358 пиксель/мкм2 и 45,22±2,299 пиксель/мкм2 

соответственно).  

На рисунках  17 и 18 представлен пример гистохимической реак-

ции на 3β-гидроксистероиддегидрогеназу в трофобластах ворсин хорио-

на на сроке 6 недель беременности при физиологическом ее течении и 

обострении ЦМВ инфекции. 

 

 

 

 

Рис. 17. Ворсинчатый хорион. 6 нед. 

беременности. Физиологическое те-

чение беременности. Интенсив-

ность гистохимической реакции на  

дегидроэпиандростерондегидроге-

назу высокая. Увел. 15х40. 

 
 

 

 

 

 

Рис. 18. Ворсинчатый хорион. 6 нед. 

беременности. Обострение ЦМВ 

инфекции на сроке 3 нед. Интенсив-

ность гистохимической реакции на  

дегидроэпиандростерондегидроге-

назу низкая. Увел. 15х40. 
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Иммуноферментные исследования супернатантов ворсин хориона 

ранних и зрелых плацент показали снижение средних значений ДЭАС 

при обострении ЦМВ инфекции по сравнению с физиологическим тече-

нием беременности, свидетельствовующее о функциональной недоста-

точности формируемых надпочечников в ранний эмбриональный и бо-

лее поздний фетальный период, что создает серьезную опасность для 

исходов беременности.  

Результаты исследования представлены в таблице 3.  

 

Таблица  3. Показатели дегидроэпиандростерон сульфата (мкмоль/л) в ворсин-

чатом хорионе и зрелой плаценте при физиологической беременности и ослож-

ненной ЦМВ инфекцией 

 

 

При исследовании сыворотки крови беременных при физиологи-

ческом течении первого триместра беременности выявлены более высо-

кие показатели сульфатированного ДЭА, чем в третьем триместре (табл. 

4), что является специфичным для данного периода и находит отраже-

ние в исследованиях (Суплотова Л.А., Храмова Е.Б., Старкова О.Б. и 

др., 2007).  

 

Таблица 4. Показатели дегидроэпиандростерон сульфата в сыворотке крови у 

женщин с физиологической беременностью и осложненной ЦМВ инфекцией 

 

Показатели 

прогестерона, 

нмоль/л 

Срок беремен-

ности, нед. 

Обострение 

ЦМВ  

инфекции 

р Физиологическое 

течение  

беременности 

Ворсинчатый 

хорион 

7-8 1,01 ± 0,072 <0,05 2,09 ± 0,091 

9-10 1,17 ± 0,021 <0,05 2,25 ± 0,066 

Зрелая  

плацента 

37-38 0,70 ± 0,020 <0,01 1,40 ± 0,033 

Показатели 

 

Срок  

беременности, 

нед. 

Обострение 

ЦМВ  

инфекции 

р Физиологическое 

течение  

беременности 

ДЭАС, 

мкмоль/л 

9-10  

 

7,6 ± 0,41 <0,001 12,2 ± 0,82 

37-38  5,4 ± 0,52 <0,01 8,9 ± 0,98 
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Обострение ЦМВ инфекции в первом и третьем триместрах бере-

менности ассоциировалось с низкими показателями ДЭАС по сравне-

нию с физиологическим течением беременности. 

Формируемый в период беременности дефицит ДЭА, несомненно, 

оказывает влияние на процесс гормонообразования и регуляцию раз-

личных звеньев репродуктивной системы (Селедцова Н.В., Хонина Н.А., 

Пасман Н.М. и др., 2007; Теппермен Д., Теппермен Х., 1989). Так, в эм-

бриональный период, он является фактором половой дифференцировки 

и дифференцировки структур мозга (Гончаров Н.П., Кация Г.В., Нижник 

А.Н., 2004; Марова Е.И., Лапшина А.М., 2006; Селедцова Н.В., Хонина 

Н.А., Пасман Н.М. и др., 2007; Теппермен Д., Теппермен Х., 1989; Labrie 

F., 2006; Labrie F., Luu-The V., Lin S.X. et al., 2005; Murphy V. E., Smith 

R., Giles W.B., 2006). Кроме того, данный гормон обладает широким 

спектром общеметаболических свойств. Он осуществляет несколько 

жизненных нейрофизиологических функций, влияет на сердечно-

сосудистую и иммунную систему, обладает ярко выраженным антиглю-

кокортикоидным действием (Гончаров Н.П., 1996; Гончаров Н.П., Кация 

Г.В., Нижник А.Н., 2004; Гончаров Н.П., Кация Г.В., Нижник А.Н. 2005; 

Гончаров Н.П., Кация Г.В. 2006; Роживанов Р.В., Вакс В.В., 2005; Labrie 

F., 2006; Labrie F., Luu-The V., Lin S.X. et al., 2005; NIH GIDE, 1997; 

Обут Т.А., Овсюкова М.В., Черкасова О.П., 2004; Hechter O., Grossman 

A., Chatterton R.T.Jr., 1997; Ozasa H., Kita M., Inoue T. et al., 1990). Меха-

низм такого действия ДЭА точно не определен, но есть мнение, что 

данный гормон усиливает процесс превращения глюкокорикоидов в не-

активные формы (Kroboth P.D. et al., 2003).  

По нашим данным, снижение уровня ДЭА, отмечаемое в крови бе-

ременных женщин и тканях плаценты при обострении ЦМВ инфекции, 

могло быть связано с повышением уровня кортизола. Поскольку ДЭА и 

кортизол имеют противоположные эффекты, их следует рассматривать 

совместно как соотношение ДЭА/кортизол, характеризующее устойчи-

вость систем организма к стрессу, инфекционному процессу. Подобно 

любой системе управления в организме, кортизол и ДЭА работают по-

переменно, создавая дуалистический баланс (Hechter O., Grossman A., 

Chatterton R.T.Jr., 1997; Ozasa H., Kita M., Inoue T. et al., 1990). Поэтому 

снижение соотношения ДЭА/кортизол в сторону преобладания послед-

него может свидетельствовать о срыве механизмов компенсации, что в 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Kroboth%20PD%5BAuthor%5D&cauthor=true&cauthor_uid=12544381
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условиях беременности, осложненной инфекциями, может привести к 

нежелательным последствиям для плода. В плаценте ДЭА превращается 

в андростендион, и основная масса последнего быстро ароматизируется 

в эстрон и эстрадиол. Андростендион является непосредственным 

предшественником эстрогенов.  

Нами была проведена гистохимическая реакция, позволившая 

оценить содержание андростендиона в трофобластах ворсин хориона в 

ранней и зрелой плацентах при физиологической беременности и 

осложненной ЦМВ  инфекцией, пример которой представлен на рисун-

ках 19 и 20. 
 

 

 

 

 

Рис. 19. Ворсинчатый хорион. 6 

нед. беременности. Физиологиче-

ское течение беременности. Ин-

тенсивность гистохимической ре-

акции на андростендион высокая. 

Увел. 15х40. 

 
 

 

 

 

 

 

Рис. 20. Ворсинчатый хорион. 6 

нед. беременности. Обострение 

ЦМВ инфекции на сроке 3 нед. 

Интенсивность гистохимической 

реакции на андростендион низкая. 

Увел. 15х40. 

 

 

При анализе цитофотометрических показателей андростендиона 

установлено уменьшение их средних значений в ворсинчатом хорионе 

на сроке 4-6 недель – до 13,19±0,668 пиксель/мкм2 (р<0,001), на сроке 7-
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8 недель – до 20,55±1,815 пиксель/мкм2 (р<0,001), на сроке 9-10 недель – 

до 27,17±2,233 пиксель/мкм2 (р<0,001) и в зрелой плаценте на сроке 37-

38 недель – до 34,41±2,717 пиксель/мкм2 (р<0,01) (физиологическое те-

чение беременности – 21,15±1,023 пиксель/мкм2, 30,54±1,327 пиксе-

лей/мкм2, 37,19±2,656 пиксель/мкм2 и 47,02±2,412 пиксель/мкм2 соот-

ветственно).  

Подавление интенсивности данной гистохимической реакции в 

трофобластах ранних и зрелых плацент свидетельствовало о нарушении 

биосинтеза андрогенов, что, безусловно, влияло на исходы беременности. 

 

 

Метаболизм андрогенов в плаценте при физиологической  

и осложненной ЦМВ инфекцией беременности  

 

Метаболиты андрогенов практически неактивны и обладают очень 

слабой андрогеновой активностью. Скорее всего, это является следстви-

ем того, что они не могут связываться с андрогеновыми рецепторами 

(Walters K.A., 2015; Walters K.A. et al., 2008). Поэтому их принято счи-

тать конечными соединениями на пути метаболизма половых гормонов, 

образование которых необходимо для вывода ненужных андрогенов. Во 

время беременности формирование андрогеновых метаболитов считает-

ся главным эмбриональным защитным механизмом, предохраняющим 

от избытка гормонов (Makieva S. et al., 2014), с одной стороны. С дру-

гой, показано их релаксирующее действие на миометрий, что лежит в 

основе сохранения беременности (Kaminski R.M. et al., 2005).  

Андростерон – один из метаболитов андрогенов, значительные ко-

личества которого определены в плаценте. Гистохимические исследова-

ния показали снижение интенсивности реакции на андростерон в тро-

фобластах ворсинчатого хориона в ранних и зрелых плацентах при фи-

зиологической беременности и осложненной ЦМВ инфекцией, примеры 

которой представлены на рисунках 21 и 22.  

Цитофотометрические показатели андростерона в ворсинах хори-

она на сроке 4-6 недель беременности, осложненной ЦМВ инфекцией, 

составили 12,08±1,034 пиксель/мкм2 (р<0,001), на сроке 7-8 недель – 

15,63±1,098 пиксель/мкм2 (р<0,001), на сроке 9-10 недель – 19,97±1,178 
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пиксель/мкм2 (р<0,001), в зрелой плаценте на сроке 37-38 недель – 

27,56±1,667 пиксель/мкм2 (р<0,001), что значительно ниже, чем при фи-

зиологическом ее течении (20,02±1,484 пиксель/мкм2, 24,51±1,634 пик-

сель/мкм2, 32,77±1,937 пиксель/мкм2, 39,23±2,098 пиксель/мкм2 соответ-

ственно).  
 

 

 

 

 

Рис. 21. Ворсинчатый хорион. 6 нед. 

беременности. Физиологическое те-

чение беременности. Интенсив-

ность гистохимической реакции на 

андростерон высокая. Увел. 15х40. 

 
 

 

 

 

Рис. 22. Ворсинчатый хорион. 6 

нед. беременности. Обострение 

ЦМВ инфекции на сроке 3 нед. Ин-

тенсивность гистохимической ре-

акции на андростерон низкая. Увел. 

15х40. 

 

 

Менее выраженным андрогенным эффектом обладают 3α- и 3β- 

андростендиолы, которые являются источником для синтеза эстрогенов. 

При проведении гистохимической реакции на андростендиол получены 

цитофотометрические показатели, отражающие интенсивность образо-

вания метаболита в трофобластах ворсин хориона в ранней и зрелой 

плаценте при физиологической беременности и осложнении ЦМВ ин-

фекцией.  

Примеры реакции на андростендиол в ворсинчатом хорионе на 

сроке 6 недель беременности при физиологическом ее течении и ослож-

нении ЦМВ инфекцией представлены на рисунках 23 и 24.  
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Рис. 23. Ворсинчатый хорион. 6 

нед. беременности. Физиологиче-

ское течение беременности. Ин-

тенсивность гистохимической ре-

акции на андростендиол высокая. 

Увел. 15х40.  

 

 

 

 

 

Рис. 24. Ворсинчатый хорион. 6 

нед. беременности. Обострение 

ЦМВ инфекции на сроке 3 нед. 

Интенсивность гистохимической 

реакции на андростендиол низкая. 

Увел. 15х40. 

 

 

Цитофотометрические показатели андростендиола на сроке бере-

менности 4-6 недель снизились до 11,66±0,585 пиксель/мкм2, на сроке 7-

8 недель – до 13,27±1,074 пиксель/мкм2, на сроке 9-10 недель – до 

26,73±2,071 пиксель/мкм2, на сроке 37-38 недель – 33,61±1,992 пик-

сель/мкм2 по сравнению с физиологическим течением беременности 

(22,50±2,038 пиксель/мкм2, 28,15±1,238 пиксель/мкм2, 38,51±2,388 пик-

сель/мкм2, 33,61±1,992 пиксель/мкм2 соответственно), что указывало на 

снижение резерва для синтеза эстрогенов. 

Следует указать, что дефицит метаболически активных андроге-

нов может являться прогностическим фактором исхода беременности 

(Makieva S., Saunders P.T.K., Norman J.E., 2014). В поддержку данного 

утверждения говорят следующие данные: патологические изменения 

уровней андрогенов в начале беременности коррелируют со спонтанны-

ми абортами или выкидышами. Например, было показано, что самопро-

извольный аборт имел место у женщин, уровни андрогенов у которых в 
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начале беременности не увеличивались (Bammann B.L. et al., 1980). С 

другой стороны, женщины с рецидивирующими выкидышами имели 

значительно более высокие уровни тестостерона и андростендиона по 

сравнению с женщинами без повторяющихся выкидышей (Okon M.A. et 

al., 1998). Литературные данные согласуются с нашими исследования-

ми, в которых установлено значительное снижение уровня андрогенов в 

ворсинчатом хорионе, полученном от женщин с самопроизвольным 

абортом, ассоциированным с ЦМВ инфекцией. 

В настоящее время исследуется влияние снижения уровня андро-

генов на развитие яичников у плода женского пола. Для выявления роли 

андрогенов были проведены эксперименты с мышами, лишенными ан-

дрогеновых рецепторов (Hu Y.C. et al., 2004). Было отмечено уменьше-

ние частоты овуляции и реакции яичников на ФСГ, заметное снижение 

созревания фолликулов, у них производилось меньше ооцитов и наблю-

дались значительное снижение формирования желтого тела и выражен-

ный апоптоз гранулезы в яичниках. У таких мышей обычно происходи-

ло увеличение размера плаценты, что могло быть компенсацией для 

поддержания достаточного питания и обеспечения кислородом зароды-

ша.  

Таким образом, у мышей, лишенных андрогеновых рецепторов 

обнаруживали снижение рождаемости из-за дефектного фолликулогене-

за, уменьшения образование желтого тела, и уменьшения ответа матки 

на гонадотропины. 

Впоследствии оказалось, что низкий уровень андрогенов у жен-

щин может быть связан с аномалиями роста фолликулов, низким функ-

циональным резервом яичников (LFOR) и первичной недостаточностью 

яичников (POI), и, таким образом, негативно влияет на женскую фер-

тильность (Prizant H., Gleicher N., Sen A. 2014).  

Выявлено, что дефицит андрогенов у плода, возникающий либо 

из-за нарушения биосинтеза (Palter S.F. et al., 2001; Miller W.L., 2005) 

или работы белка StAR (Hasegawa T. et al., 2000) приводит к очевидным 

дефектам в функционировании яичников, и также, что примечательно, 

дефицит андрогенов сохраняется и во взрослой – постнатальной жизни. 

Этот сохраняющийся недостаток андрогенов у взрослых женщин при-

водит к нерегистрируемому (неопределяемому) уровню тестостерона, 

крайне низкому уровню прогестерона и кортикостерона, слабо развито-

http://www.ncbi.nlm.nih.gov/pubmed/?term=Hu%20YC%5BAuthor%5D&cauthor=true&cauthor_uid=15277682
http://joe.endocrinology-journals.org/search?author1=Hen+Prizant&sortspec=date&submit=Submit
http://joe.endocrinology-journals.org/search?author1=Norbert+Gleicher&sortspec=date&submit=Submit
http://joe.endocrinology-journals.org/search?author1=Aritro+Sen&sortspec=date&submit=Submit
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му репродуктивному тракту, свидетельствующему о гипоэстрогенизме 

(Hasegawa T. et al., 2000). При этом яичники не показывают хорошее 

развитие фолликулов или наличие желтого тела, но они увеличены за 

счет стромы. У женщин с дефицитом ферментов биосинтеза андрогенов, 

отмечаются нарушения образования андрогенов, эстрогенов и глюко-

кортикоидов (Yanase T. et al., 1991), а также ановуляторный гипергона-

дотрофный гипогонадизм. У них также не созревают полностью фолли-

кулы. Такое нарушение эмбрионального развития внутри фолликулов, 

вероятно, является следствием недостаточной выработки андрогеновых 

предшественников биосинтеза эстрогенов (Dumesic D.A. et al., 2002). 

В то же время, другие исследователи пришли к выводу, что андро-

гены, видимо, не требуется во время внутриутробной жизни для нор-

мального развития яичников (Abbott D.H. et al., 2006). 

Андрогены, как было сказано ранее, необходимы для нормального 

развития репродуктивных органов плода мужского пола. Недостаточная 

продукция андрогенов приводит к развитию различных форм гипого-

надизма (Гончаров Н.П., 1996). 

Андрогены оказывают влияние не только на развитие органов 

плода. Они могут принимать участие в процессах децидуализации эн-

дометрия (Ujvari D. et al., 2020; Younas K. et al., 2019; Gong H. et al., 

2019) и имплантации (Giudice L.C., 2006). Плацентация и установление 

беременности зависят от адекватной децидуализации. Следовательно, 

аберрантная децидуализация связана с этиологией расстройств бере-

менности, включая преэклампсию и задержку внутриутробного роста и 

развития плода. Поэтому снижение уровня андрогенов может способ-

ствовать развитию данных осложнений беременности. 

Несмотря на то, что исследований по влиянию андрогенов на пла-

центу в доступной литературе не было обнаружено, мы считаем, что они 

должны оказывать воздействие на данный орган. В поддержку этой ги-

потезы говорит факт обнаружения AR в плаценте (Horie K. et al., 1992). 

Логично предположить, что андрогеновые эффекты проявляются через 

изменение метаболических и регуляторных процессов. Как упоминалось 

выше, данные гормоны способствуют продуцированию ряда факторов 

роста (IGF-1, EGF), стимулируют работу вторичных мессенджеров 

(Са2+, цАМФ, инозитол-3-фосфат), инициируют сигнальные пути 

(FOXO3a, MAPK, RAS/MEK/ERK), активируют ферменты стероидоге-
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неза и ферменты, контролирующие состояние соединительной ткани. 

Изменение работы факторов роста, сигнальных путей и отдельных фер-

ментов вследствие снижения содержания андрогенов нарушит нормаль-

ный процесс роста и дифференцировки клеток, и как следствие, вызовет 

расстройство развития плаценты во время беременности. 

Кроме того, уменьшение количества андрогенов приведет к нару-

шению «созревания» шейки матки перед родами и пролиферации клеток 

миометрия. Понижение концентрации гормонов не будет способство-

вать расслаблению гладкой мускулатуры матки, тем самым приводя к 

усилению самопроизвольной сократимости миометрия и, следовательно, 

к угрозе прерывания беременности. 

 

 

Синтез эстрогенов в плаценте при физиологической и  

осложненной ЦМВ инфекцией беременности 

 

Эстрогены играют ведущую роль в формировании и развитии бе-

ременности. Они обеспечивают рост мышечной и соединительной ткани 

миометрия, усиливают синтез актомиозина, способствуют выработке 

прогестерона, накоплению гликогена и фосфорных соединений, снижа-

ют потенциал покоя, увеличивают накопление ионов кальция, стимули-

руют α-адренорецепторы, повышают чувствительность матки к оксито-

тическим веществам, поддерживают интенсивный кровоток в матке, по-

вышают синтез простагландинов, модулируют иммунный ответ, участ-

вуют в созревании надпочечников у плода и регуляции последователь-

ности событий, приводящих к началу родов (Costa M.A. 2016; Mesiano 

S., 2019; Albrecht E.D., Pepe G.J., 1990; Pepe G.J., Albrecht E.D., 1995; 

Gibb W. et al., 2006; Cohen-Solal J.F. et al., 2006; Tanriverdi F. et al., 2003). 

Считается, что снижение концентрации эстрогенов в плазме крови более 

чем на 35 % указывает на острую недостаточность функционирования 

фетоплацентарного комплекса и является фактором угрожающего тече-

ния беременности.  

Образование эстрогенов происходит по следующему пути (Cha-

tuphonprasert W. et al., 2018; Noyola-Martínez N et al., 2019; Kovács K. et 

al., 2019; Strauss J.F., Martinez F., Kiriakidou M., 1996). Первая стадия – 
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образование прегненолона. Для синтеза эстрогенов прегненолон транс-

формируется под действием фермента Р450с17. Данный фермент у че-

ловека присутствует в надпочечниках плода, где он и осуществляет свои 

реакции, в связи, с чем и появилось понятие о фетоплацентарной систе-

мы (Diczflusy E., 1964; Diczflusy E., 1969; Diczflusy E., Pion R., Schwers 

J., 1965). Образующийся ДЭА превращается в андростендион, который 

ароматизируется в эстрон. Конечная стадия образования эстрогенов в 

плаценте осуществляется 17β-гидроксистероиддегидрогеназой, уни-

кальным по своей мультифункциональности энзимом.  

Считается, что многообразие изоформ 17β-гидроксистероид-

дегидрогеназы составляет сложную систему, гарантирующую опреде-

ленную адаптацию в клетках и регулирование уровней половых стеро-

идных гормонов. Широкая и накладывающаяся субстратная специфич-

ность предполагает взаимодействие 17β-гидроксистероиддегидрогеназ с 

другими метаболическими путями. За финальную стадию образования 

эстрогенов отвечает 17β-гидроксистероиддегидрогеназа I типа. Фермент 

катализирует синтез эстриола и эстрадиола из эстрона (Luu-The V., 

2001; Luu-The V., Zhang Y., Poirier D. et al., 1995; Mindich R., Moller G., 

Adamski J., 2004; Moeller G., Adamski J., 2009; Moghrabi N., Andersson S., 

1998; Peltoketo H., Luu-The V., Simard J., et al., 1999; Vihko P., Harkonen 

P., Soronen P. et al., 2004).  

В плаценте отсутствуют ферменты, способные осуществлять 16α-

гидроксилирующую активность. В самом органе могут синтезироваться 

лишь эстрон и эстрадиол. Сульфатированный ДЭА поступает в кровь 

плода,  гидроксилируется в печени с образованием 16α-гидрокси-ДЭАС, 

который в плаценте под действием сульфатазы превращается в 16α-

гидрокси-ДЭА. Далее в трофобласте под действием 3βHSD-1, 17βHSD и 

CYP19 образуется эстриол (Pasqualini J.R., 2005). Сульфатированный 

ДЭА, образующийся в организме матери и плода, также поглощается 

плацентой, где под действием сульфатазы, 3βHSD-1, 17βHSD и аромата-

зы превращается в эстрадиол или под действием сульфатазы, 3βHSD-1 и 

ароматазы – в эстрон.  

Итак, в процессе биосинтеза под действием 17β-

гидроксистероиддегидрогеназы I типа образуются метаболически ак-

тивные эстрадиол и эстриол. Их качественная и количественная оценка 
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была проведена в ворсинчатом хорионе ранней и зрелой плаценты при 

физиологической и осложненной ЦМВ инфекцией беременности. 

Пример распределения продуктов гистохимической реакции на 

17β-гидроксистероиддегидрогеназу I типа в трофобластах ворсинчатого 

хориона на сроке 6 недель беременности представлен на рисунках 25 и 

26.  

 

 

 

 

Рис. 25. Ворсинчатый хорион. 6 нед. 

беременности. Физиологическое те-

чение беременности. Интенсив-

ность гистохимической реакции на 

17β-гидроксистероиддегидрогеназу I 

высокая. Увел. 15х40.  

 
 

 

 

 

 

Рис. 26. Ворсинчатый хорион. 6 нед. 

беременности. Обострение ЦМВ 

инфекции на сроке 3 нед. Интенсив-

ность гистохимической реакции на 

17β-гидроксистероиддегидрогеназу I 

типа низкая. Увел. 15х40. 

 

 

Цитофотометрические показатели фермента в ворсинчатом хори-

оне ранней и зрелой плаценты при обострении ЦМВ инфекции были 

снижены по сравнению с физиологической беременностью и составили 

на сроке 4-6 недель 13,44±1,049 пиксель/мкм2 (р<0,001), на сроке 7-8 

недель – 16,49±1,773 пиксель/мкм2 (р<0,001), на сроке 9-10 недель – 

23,78±2,009 пиксель/мкм2 (р<0,001), на сроке 37-38 недель – 30,34±2,711 

пиксель/мкм2 (р<0,001) (24,33±1,483 пиксель/мкм2, 28,90±2,033 пик-

сель/мкм2, 35,282±2,067 пиксель/мкм2, 45,92±2,616 пиксель/мкм2 соот-
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ветственно), свидетельствующие о подавлении эстрогеногенеза, что 

подтверждалось результатами иммуноферментного исследования, кото-

рые представлены в таблицах 5 и 6.  

 

Таблица  5. Показатели эстрадиола (пмоль/л) в ворсинчатом хорионе и зрелой 

плаценте при физиологической и осложненной ЦМВ инфекцией беременности 

 

 

 

Таблица  6. Показатели эстриола (нмоль/л) в ворсинчатом хорионе и зрелой 

плаценте при физиологической и осложненной ЦМВ инфекцией беременности 

 

 

Аналогичные результаты по направлению изменений в показате-

лях эстрадиола и эстриола получены при исследовании сыворотки крови 

у женщин с обострением ЦМВ инфекции в период беременности по 

сравнению с физиологическим ее течением (табл. 7).  

При этом показатели эстрогенов были выше в сыворотке крови, 

чем в супернатантах ворсинчатых хорионов и зрелых плацент от жен-

щин с обострением цитомегаловирусной инфекции, что указывало на 

локальное, вызванное окислительным процессом и воспалением, нару-

шение функциональной и метаболической активности трофобласта, о 

чем говорилось выше. Также среди причин снижения уровня эстрогенов 

при цитомегаловирусной инфекции в период беременности, можно 

назвать выявленное нами снижение количества их предшественника – 

Показатели 

 

Срок  

беременности, 

нед. 

Обострение 

ЦМВ инфекции 

р Физиологическое 

течение  

беременности 

Ворсинчатый 

хорион 

7-8 13415,8 ± 148,33 <0,01 24181,3 ± 134,45 

9-10 15567,2 ± 106,67 <0,01 26002,2 ± 102,37 

Зрелая  

плацента 

37-38 21346,2 ± 110,33 <0,01 32325,9 ± 125,87 

Показатели 

 

Срок  

беременности, 

нед. 

Обострение 

ЦМВ инфекции 

р Физиологическое 

течение  

беременности 

Зрелая  

плацента 

37-38 177,9 ± 6,11 <0,01 251,1 ± 9,02 



________________________  Глава II _______________________ 

80 

 

холестерола (Луценко М.Т., Довжикова И.В., 2011), а также дегидроэпи-

андростерона.  

 

Таблица 7. Показатели эстрадиола (пмоль/л) и эстриола (нмоль/л) в сыворотке 

крови у женщин с физиологической и осложненной цитомегаловирусной инфек-

цией беременностью 

 

 

Уменьшение содержания эстрогенов регистрируется при острых 

респираторных вирусных инфекциях в период беременности (Луценко 

М.Т. и др., 2000), а также при обострении инфекций, вызванных виру-

сом простого герпеса I и II типов (Луценко М.Т. и др., 2010).  

Анализ зарубежных источников литературы показал, что изучени-

ем синтеза эстрогенов при персистирующих вирусных инфекциях прак-

тически не занимались. Известно только о значительно более низких 

уровнях 17β-гидроксистероиддегидрогеназы I типа в плазме у женщин с 

преэклампсией по сравнению с женщинами с нормальной беременно-

стью (Ishibashi O. et al., 2012; Ohkuchi A. et al., 2012).  

Обострение ЦМВ сопровождается развитием иммунного воспале-

ния (Pereira L., 2018; Cardenas I. et al., 2010; Weisblum Y. et al., 2011; 

Benard M. et al., 2014). Причинами снижения активности ферментов, 

участвующих в синтезе эстрогенов при ЦМВ инфекции, могут быть по-

вышенные уровни TNFα (Andrievskaya I.A. et al., 2019; Hamilton S.T. et 

al., 2012; Scott G.M. et al., 2012; Smith P.D. et al., 1992), инициирующего 

через NF-kB-путь деградацию внеклеточного матрикса и апоптоз тро-

фобласта (Haider S. et al., 2009; Garcia-Lloret M.I. et al., 2000; Chan G. et 

al., 2005; Chou D. et al., 2006). Также отмечено патогенное влияние на 

синтез эстрогенов высоких уровней ROS и маркеров окислительного 

Показатели 

 

Срок  

беременности, 

нед. 

Обострение 

ЦМВ  

инфекции 

р Физиологическое 

течение  

беременности 

Эстрадиол 9-10 

 

27638,1 ± 156,14 <0,05 29065,1 ± 147,29 

37-38 19073,5 ± 109,28 <0,001 31958,5 ± 185,13 

Эстриол 37-38 36,8 ± 1,51 <0,01 53,9 ± 2,30 
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стресса в крови и плаценте от женщин с ЦМВ инфекцией (Ишутина 

Н.А. и соавт, 2014; Hu X.Q. et al., 2019; Lee Y.L. et al., 2014; Gutiérrez S.J. 

et al., 2008; Speir E. et al., 1996). 

 

 

Эстрогены и их рецепция в плаценте при физиологической  

и осложненной ЦМВ инфекцией беременности 

 

Эстрогены подобно другим стероидным гормонам осуществляют 

свое действие через рецепторы (ER) – члены суперсемейства стероид-

рецептор – являющимися одновременно транскрипционными фактора-

ми. Наиболее хорошо изучены рецепторы эстрадиола ERα и ERβ. ERα 

локализуются в органах женской репродуктивной системы, а также в 

плаценте – синцитио-/цитотрофобласте (Pepe G.J., Albrecht E.D., 1995; 

Billiar R.B., Pepe G.J., Albrecht E.D., 1997; Bukovsky A. et al., 2003а). ERβ 

обнаружены в яичках, яичниках, селезенке, вилочковой железе, надпо-

чечниках, гипофизе, головном мозге, почках и коже (Mosselman S., 

Polman J., Dijkema R., 1996; Wilson M.E., Price R.H.Jr., Handa R.J., 1998; 

Shupnik M.A., et al., 1998; Pennie W.D., Aldridge T.C., Brooks A.N., 1998; 

Brandenberger A.W. et al., 1997). Исследования показали, что эти два 

подтипа ER по-разному реагируют в зависимости от лиганда и могут 

иметь различные роли в регуляции генов (Fuentes N. et al., 2019; Yaşar P. 

et al., 2016; Hewitt S.C. et al., 2016; Prossnitz E.R. et al., 2014; Böttner M. et 

al., 2014; Cooke P.S. et al., 2017; Amenyogbe E. et al., 2020).  

Классический путь включает связывание лиганд-связанного ре-

цептора со специфической палиндромной последовательностью ДНК 

(ERE) в промоторах генов, чувствительных к эстрогену. Тем не менее, 

геномные эффекты эстрогенов также могут протекать по ERE-

независимому механизму, включающему межбелковые взаимодействия 

с другими факторами транскрипции (Fuentes N. et al., 2019; Yaşar P. et 

al., 2016). 

Эстрогены могут активировать GPER – рецептор, связанный с G-

белком, и мембраноассоциированными ERα и ERβ. Эстрогеновые ре-

цепторы стимулируют аденилатциклазу с образованием цАМФ, что 

приводит к активации как проксимальных (Src, PI3K), так и дистальные 



________________________  Глава II _______________________ 

82 

 

киназ (ERK, Akt) (Levin E.R., 2009). Активация мембранных или мем-

браноассоциированных рецепторов эстрогена может привести как к 

быстрым, так и к долгосрочным ответам. Наличие ERα, ERβ и GPER в 

маточных артериях и плаценте было продемонстрировано с помощью 

полимеразной цепной реакции в реальном времени, вестерн-блоттинга и 

иммуногистохимии (Tropea T. et al., 2015; Fujimoto J. et al., 2005; Liao 

W.X. et al., 2005).  

Кроме рецепторного механизма действия, эстрогенам присущи так 

называемые «быстрые» негеномные эффекты. Эстроген запускает ряд 

внутриклеточных сигнальных путей, включая MAPK и PI3K/Akt, акти-

вацию потоков ионных каналов, генерацию вторичных мессенджеров, 

опосредованных рецептором, связанным с G-белком, и стимуляцию ре-

цепторов фактора роста (Moriarty K. et al., 2006). 

Благодаря исследованиям взаимосвязи между множественными 

сигнальными путями, инициированными мембранными рецепторами 

эстрогена, и изменениями в транскрипции, опосредованными генами, 

содержащими эстрогенный элемент ответа стала очевидной сложность 

понимания механизмов передачи сигналов эстрогеном (Edwards D.P., 

2005; Vasudevan N. et al., 2007).  

Исследования на нескольких различных типах клеток показали, 

что инициируемая мембранами передача сигналов эстрогенов клетками 

может усиливать передачу сигналов эстрогенов, инициированных яд-

ром. Ряд каскадов, включающих киназы, а также кальциевые каналы, 

по-видимому, вовлечены в эту транскрипционную потенциацию. Кроме 

того, участие этих различных внутриклеточных сигнальных путей мо-

жет происходить либо параллельно, либо последовательно, а конверген-

ция мембранно-инициируемых эффектов эстрогена для влияния на 

транскрипцию может включать белок-белковые взаимодействия, транс-

локацию белков, а также фосфорилирование белков (Vasudevan N. et al., 

2007). 

В плаценте действия эстрогенов осуществляются классическим 

способом – через рецепторы (Pepe G.J. et al.,1995). Эстрогены, действуя 

через свои рецепторы в плаценте, а также в других репродуктивных 

тканях, организуют регуляцию различных процессов, необходимых для 

становления и поддержания беременности. 
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Одной из важнейших функций эстрогенов является их способ-

ность оказывать влияние на маточно-плацентарный кровоток (Hu X.Q. et 

al., 2019). Причем, самым эффективным гормоном в данном случае яв-

ляется эстриол (Mesiano S., 2019), количество которого во время бере-

менностии значительно увеличивается.  

Механизмы такого влияния различны. Эстрогены влияют на эндо-

телий сосудов, увеличивая продукцию ряда вазодилататоров, таких как 

оксид азота (Miller V.M., Mulvagh S.L., 2007), эндотелиальный фактор 

гиперполяризации и простациклин. Активация эстрогенами эндотели-

альной NO-синтазы может происходить тремя различными механизма-

ми:  

1) стимуляция экспрессии гена фермента посредством ERα;  

2) активация сигнального пути, состоящего из фосфоинозитид-3-

киназы – протеинкиназы В, фосфорилирующей NO-синтазу, что приво-

дит к увеличению активности последней;  

3) увеличение экспрессии кальмодулина, который необходим для 

кальций-зависимой стимуляции NO-синтазы.  

Эстрогены сдвигают баланс синтеза простаноидов к вазодилататору 

– простациклину (PGI2). Они увеличивает продукцию PGI2 через стиму-

ляцию активности циклооксигеназы 1 и PGI2-синтазы (Jun S.S. et al., 

1998; Ospina J.A. et al., 2002; Ospina J.A., Duckles S.P., Krause D.N., 2003; 

Sherman T.S. et al., 2002). Одновременно, эстрогены подавляет индукцию 

циклооксигеназы 2 типа и, соответственно, синтез простагландина E2 в 

сосудах. Синергичное действие простациклина и оксида азота служит ос-

новным условием адаптации материнских сосудов к увеличению нагруз-

ки на кровоток, обеспечивает системную вазодилатацию и снижение ар-

териального давления по мере прогрессирования беременности. 

Кроме того, эстрогены препятствуют действию традиционных ва-

зоконстрикторов (например, эндотелина 1). Они снижают экспрессию 

ангиотензин-превращающего фермента в эндотелиальных клетках, а 

также рецептора 1 ангиотензина II (Miller V.M., Duckles S.P., 2008; 

Kikuchi et al., 2000; Lippert et al., 2000; Rauschemberger et al., 2008). Так-

же установлено, что эстрогены влияют на свертывающую систему кро-

ви: уменьшает уровень фибриногена, антитромбина III и протеина S 

(Miller V.M., Duckles S.P., 2008). 
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С появлением новых мощных молекулярных методов исследова-

ния, становится ясно, что механизмы действия эстрогенов гораздо раз-

нообразнее и сложнее, чем первоначально предполагалось. 

Экспериментальные данные показывают, что эстрогены необхо-

димы для имплантации эмбриона (Lee K.Y. et al., 2007). Эстрогены, дей-

ствующие через ERα, переводят матку в рецептивное состояние, необ-

ходимое для приема бластоцисты и восприятию ее гуморальных сигна-

лов (Massimiani M. et al., 2019). Кроме того, при участии эстрогена (ме-

таболита – 4ОН-эстрадиола) осуществляется необходимый этап имплан-

тации – активация бластоцисты. 

При подготовке материнского организма к имплантации эстроге-

ны увеличивают пролиферацию эпителиальных клеток эндометрия, в 

качестве локальных медиаторов его действия выступают IGF1-1 и IGF1-

2, фактор роста фибробластов (FGF)-9, TGF-β1, лейкемия-

ингибирующий фактор (LIF), муцин 1, вторичный мессенджер RasD1, 

транскрипционные факторы: Egr1, бета-белок, связывающий энхансер 

CCAAT (CCAAT/enhancer-binding protein beta) (C/EBPβ), а также лептин 

и щелочная фосфатаза (Akp6) (Massimiani M. et al., 2019). 

Следует добавить, что от эстрогенов зависит координация адгези-

онной способности бластоцисты и восприимчивости матки (Aplin J.D. et 

al., 2004). Центральным моментом синхронизации между маткой и эм-

брионом является секреция белка OPN, регулируемая эстрогеном через 

ER (Xie Q.Z. et al., 2013). Бластоциста быстро активирует свою адгези-

онную способность в ответ на OPN посредством образования адгезив-

ных комплексов интегрина на поверхности клеток трофэктодермы 

(Chaen T. et al., 2012). 

После эмбриональной имплантации клетки эндометрия, окружа-

ющие имплантированный эмбрион, прогрессируют в пролиферацию и 

впоследствии дифференцируются в децидуальные клетки. Трансформа-

ция стромальных клеток эндометрия в специализированные децидуаль-

ные клетки, секретирующие факторы роста и цитокины для регуляции 

ремоделирования сосудов и притока иммунных клеток носит название 

децидуализация. Для успешного осуществления данного процесса тре-

буется присутствие эстрогенов (Gellersen B. et al., 2014; Maruyama T. et 

al., 2008).  
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Эстрогены могут управлять децидуализацией косвенным образом 

через активацию экспрессии рецепторов прогестерона, что позволяет 

эндометрию реагировать на прогестерон (Okada H. et al., 2018). Но в от-

личие от самого прогестерона, о факторах, которые опосредуют дей-

ствие эстрогена в процессе децидуализации известно мало. Эстрогены 

могут регулировать превращение предшественников стромальных кле-

ток в децидуальные клетки через стимуляцию экспрессии HB-EGF 

(Chobotova K. et al., 2005; Yue L. et al., 2018), сигнального пути LIF-

STAT3-Egr1, опосредующего экспрессию важного для децидуализации 

стромальных клеток белка Wnt4 (Liang X.H. et al., 2014). 

Наряду с другими стероидными гормонами эстрогены через ERα ре-

гулируют экспрессию десатуразы жирных кислот 3 (Fads3) в децидуаль-

ных клетках. Fads3 может играть существенную роль во время децидуали-

зации через продукцию арахидоновой кислоты и/или через амилоридсвя-

зывающий белок 1 (Abp1) (Lin S. et al., 2018; Liang X.H. et al., 2010). 

Инвазия клеток трофобласта является критическим событием, свя-

занным с имплантацией эмбриона и формированием функциональной 

плаценты (Moser G. et al., 2018). В экспериментах на культуре клеток 

трофобласта человека было установлено, что эффект эстрогена на инва-

зию и повышение жизнеспособности клеток трофобласта происходит 

посредством SGK1 (serum/glucocorticoid-induced kinase) (He W.H. et al., 

2019). W.H. He с соавторами предполагают, что стимулированая эстро-

геном киназа SGK1, участвующая в эпителиальном транспорте ионов 

посредством регуляции ENaC и других ионных транспортеров, способ-

ствует формированию так называемого «фето-материнского интерфей-

са» (He W.H. et al., 2019). Кроме того, SGK1 опосредует нижестоящие 

мишени для эстрогена, участвующие в инвазии трофобластов, такие как 

сигнальный путь PI3K и индукция разрушающих внеклеточный матрикс 

ткани матки ММР (Staun-Ram E. et al., 2004). Кроме деградации межкле-

точного матрикса, для продвижения трофобласта необходима его про-

лиферация. Эстроген ответственен за индукцию множества белков, свя-

занных с пролиферацией клеток (Lessey B.A. et al., 2014), таких как се-

мейство ростовых факторов IGFBP. 

Эстрогены необходимы для запуска программы морофогенеза 

тканей в плаценте и матке. Ранее было обнаружено, что, несмотря на то, 
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что клетки матки были высокочувствительными к эстрогенам in vivo, in 

vitro они практически полностью переставали реагировать на физиоло-

гические дозы этих гормонов. Данный факт был объяснен наличием в 

условиях организма факторов роста, служащих медиаторами стероид-

ных гормонов за счет аутокринного и паракринного действия, что спо-

собствует регуляции процессов пролиферации и дифференциации 

(Tomooka Y., DiAugustine R., McLachlan J., 1986). Эстрогены потенци-

руют эффекты целого ряда факторов, необходимых морфологической и 

функциональной дифференцировки. 

Для максимального обмена между кровеносными системами мате-

ри и плода необходимо, чтобы капилляры составляли более половины 

массы плацентарной ворсинок. Факторы роста и молекулы адгезии не-

обходимые для ангиогенеза включают: фактор роста фибробластов, со-

судистый фактор роста эндотелия, инсулиноподобный фактор роста, се-

мейство эпидермальных факторов роста, ангиопоэтины, оксид азота, а 

также различные интегрины, необходимые для прикрепления клеток 

(Cid M.C. et al., 2002; Rubanyi G.M. et al., 2002). 

Одним из самых мощных и широко признанных факторов, влия-

ющих на развитие сосудов в ворсинках, является VEGF, известный так-

же как фактор сосудистой проницаемости или васкулотропин (Ferrara 

N., 2004; Ferrara N., Davis-Smyth T., 1999). В период беременности акти-

вация эстрогенами данного белка лежит в основе васкулогенеза (образо-

вание эмбриональной сосудистой системы) и ангиогенеза (рост новых 

сосудов в уже существующей сосудистой системе). Больше всего VEGF 

продуцируется в цитотрофобласте (по сравнению с синцитиотрофобла-

стом и клетками Кащенко-Гофбауэра), а также во вне ворсинчатом 

(extravillous) трофобласте.  

VEGF регулирует все стадии процесса ангиогенеза (Chen D.B. et 

al., 2014: Melincovici C.S. et al., 2018): играет ключевую роль в стимули-

ровании сборки эндотелиальных клеток в капилляры в развивающихся 

промежуточных ворсинках в течение первой половины беременности 

человека, а также стимулирует митоз и увеличивает хемотаксис эндоте-

лиальных клеток (Reynolds L.P. et al, 2001; Albrecht E.D. et al., 2010; 

Melincovici C.S. et al., 2018). Экспериментальные данные показали сти-

мулирование VEGF пролиферации и миграции плацентарных эндотели-
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альных клеток, а также образование трубчатых структур in vitro (Liao 

W.X. et al., 2010; Athanassiades A. et al., 1998; Rauschemberger М.В. et al., 

2011; Shah D.A. et al., 2015; Jardim L.L. et al., 2015). VEGF индуцирует 

проницаемость эндотелиальных клеток, приводящую к экстравазации 

белков плазмы для обеспечения матрицы для миграции эндотелиоцитов 

(Dvorak H.F. et al., 1999; Melincovici C.S. et al., 2018). Он стимулирует 

эндотелиальную экспрессию протеаз, таких как активаторы плазмино-

гена урокиназного и тканевого типа (uPA и tPA), а также интерстици-

альную коллагеназу, которые разрушают внеклеточный матрикс и осво-

бождают эндотелиальные клетки для миграции и пролиферирации 

(Pepper M.S. et al., 1991; Unemori E.N. et al., 1992). VEGF может стиму-

лировать продукцию различных активных веществ, обладающих соб-

ственным ангиогенным действием. В эндотелиальных клетках плацен-

ты, например, VEGF повышает концентрацию [Ca2+]i, 

Ca2+/кальмодулина, продукцию простациклина (He H. et al., 1999; Chen 

J. et al., 2017) и мощно активирует образование оксида азота (Mata-

Greenwood E. et al., 2010; Zheng J. et al., 2008; Shashar M. et al., 2017), 

одного из ключевых регуляторов ангиогенеза (Wang K. et al., 2012). 

VEGF участвует в регуляции выживания зарождающихся эндотелиаль-

ных клеток посредством сигнального пути PI3К/Akt, что способствуют 

созреванию и стабильности вновь образованных сосудов (Gerber H.P. et 

al., 1998). Интересна обнаруженная взаимосвязь между VEGF, VEGFR2 

и интегринами αvβ3 (Somanath P.R. et al., 2009) и αvβ5 (Dobrzycka B. et 

al., 2009) для регуляции ангиогенеза, включая миграцию эндотелиаль-

ных клеток, выживание и образование трубок. 

При стимулировании морфогенеза сосудов VEGF действует сов-

местно с двумя протеинами – ангиопоэтином-1 и -2 (Albrecht E.D., Pepe 

G.J., 2010; Grant Z.L. et al., 2019). Установлено, что ангиопоэтин-1 выде-

ляется как из цито-, так и из синцитиотрофобласта, в то время как экс-

прессия ангиопоэтина-2 обнаружена преимущественно в цитотрофобла-

сте (Rider V., Carlone D.L., Foster R.T., 1997). Ангиопоэтин-1 способ-

ствует ассоциации эндотелиальных клеток, гладкомышечных клеток и 

перицитов для созревания формирующихся кровеносных сосудов. Ан-

гипоэтин-2, наоборот, разрыхляет стенку сосудов для того, чтобы эндо-

телиальные клетки становились доступными для VEGF. Все вместе 

обеспечивает васкулогенез и, таким образом, кровоток в плаценте и, 
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следовательно, рост и развитие плода (Hanahan D., 1997; Lobov I.B. et 

al., 2002; Visconti R.P. et al., 2002; Yancopoulos G.D. et al., 2000). 

Эстроген повышает уровень PIGF (Johnson M.L. et al., 2006). PIGF 

высоко экспрессируется в плаценте на всех стадиях беременности. Ло-

кализация мРНК PIGF в синцитиокапилярных мембранах ворсинчатого 

трофобласта позволила предположить паракринное действие фактора на 

эндотелиальные клетки сосудов при ангиогенезе плаценты и аутокрин-

ное на функции трофобласта (Khaliq A. et al., 1996). Несмотря на то, что 

ещё в 1997 году было получено первое доказательство проангиогенного 

действия PIGF, впоследствии, стало принято считать, что экспрессия 

PIGF является избыточной для физиологического ангиогенеза, и таким 

образом, объяснение высокого уровня экспрессии PIGF в плаценте 

должно быть, и его ещё предстоит сделать. 

Хорошо изучен bFGF (Rider V., et al., 1997), который также регу-

лируется эстрогенами (Nakagawa Y., 2004). bFGF индуцируя пролифе-

рацию эндотелиоцитов, приводит к увеличению количества сосудов 

(Reynolds L.P., Redmer D.A., 2001). Он также контролирует выработку 

ферментов, вызывающих ремоделлирование экстрацеллюлярного мат-

рикса, в частности коллагеназы, матриксной металлопротеиназы и акти-

ватора плазминогена, способствующих вазодилатации (Presta M., 1988) 

и отвечает за хемотаксис. Кроме того, выявлено, что изменения в систе-

ме лиганд/рецептор bFGF могут вызывать кровотечение путем наруше-

ния экспрессии интегринов, являющихся молекулами клеточной адгезии 

и тесно вовлеченных в процессы ангиогенеза (Klein S., Giancott M., 

Presta M. et al., 1993). 

Эстрогены оказывают потенцирующее действие на семейство 

EGF. Считается, что EGF облегчает имплантацию, он способствует ро-

сту бластоцисты и разрастанию трофобластов (Chobotova K., 2002; Hof-

mann G.E., 1992; Maruo T., 1995). Эстрогены потенцируют действие 

TGF-β, относящегося к семейству EGF. Известно, что TGF-β участвует в 

ангиогенезе через усиление экспрессии VEGF в эндотелиальных клет-

ках, а также через индукцию апоптоза, что необходимо не только для 

обрезки образующейся сосудистой сети на поздних стадиях ангиогенеза; 

но и на начальных этапах для продолжения ангиогенеза (Ferrari G. et al., 

2009). TGF-β связываясь с рецепторами вызывает пролиферацию и ми-
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грацию эндотелиальных клеток (Jardim L.L. et al., 2015), увеличивает 

дифференцировку и организацию эндотелиальных клеток (Mallet C. et 

al., 2006). TGF-β регулирует ангиогенез с помощью различных механиз-

мов; например, он участвует в пролиферации и созревании сосудов, че-

редуя два сигнальных каскада с противоположными эффектами (ALK1 и 

ALK5). TGF-β усиливает экспрессию других ангиогенных факторов, та-

ких как PDGF, IL-1, bFGF, TNF-α и TGF-α (Guerrero P.A. et al., 2017). 

Наиболее значимый эффект EGF заключается в его участии в ре-

гуляции экспрессии IGF-1. Согласно многим исследованиям, IGF-1 и, 

вероятно, IGF-2 являются медиаторами действия эстрогенов в тканях. 

Эстроген стимулирует продуцирование и экспрессию IGF-1 и ингибиру-

ет IGFBP-3 (Putney D.J., Pepe G.J., Albrecht E.D., 1990). IGFBP осу-

ществляют контроль активности IGF в кровяном русле и в тканях. Ин-

сулиноподобный фактор роста обеспечивает пролиферацию, дифферен-

цировку и выживаемость клеток. Рецепторы IGF обладают тирозинки-

назной активностью и в качестве вторичных посредников при передаче 

сигнала в клетку используют адапторы – IRS-I/Shc, которые через внут-

риклеточный сигнальный путь IRS/PI3K/Akt, в свою очередь, обеспечи-

вают выживаемость клетки и через Shc/Ras/Crb2/MAPК – клеточную 

пролиферацию (Yu L., 2008). Многие авторы настаивают на ведущей 

роли данного фактора при пролиферации миоцитов. 

Таким образом, эстрогены играют одну из ключевых ролей в про-

цессе пролиферации клеток. Действуют при этом, гормоны не только 

посредством ростовых факторов. Пролиферация клеток регулируется 

механизмами контроля клеточного цикла, включающего набор циклин-

зависимых киназ (CDK) вместе с их активаторами (циклинами) и инги-

биторами. Эстрадиол прямо (через сигнальный путь, включающий по-

следовательность PI3K – Akt – GSK-3β) регулирует клеточный цикл. 

Кроме того, под действием эстрадиола происходит ускорение прогрес-

сии клеточного цикла из G- в S-фазу за счет увеличения активности 

CDK4 и CDK2, стимулирования экспрессию циклина D1, а также сни-

жения уровня ингибиторов CDK (Prall O.W.J. et al., 1997). 

Индуцированная эстрогенами пролиферация эндотелиоцитов про-

исходит с участием интегринов – гетеродимерных гликопротеинов, ло-

кализованных на клеточной поверхности, которые являются рецептора-
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ми внеклеточного матрикса, участвующими в прикреплении, миграции, 

дифференцировке и росте клеток сосудов (Karimi F. et al., 2018).  

Эстрогены регулируют высвобождение из клеток, а также экс-

прессию/активность ММР-2 и ММР-9 – ферментов, играющих ключе-

вую роль в ангиогенезе поскольку они разрушают белки внеклеточного 

матрикса и способствуют миграции эндотелиальных клеток и формиро-

ванию трубки (Chen J. et al., 2017). 

Для нормального ангиогенеза необходимы белки, управляющие 

миграцией клеток. Во время периимплантации эстроген принимает уча-

стие в регуляции экспрессию белков, принадлежащих к семейству мо-

тинов (AMOT, AMOTL1 и AMOTL2) (Matsumoto H. et al., 2012). AMOT 

считается основным адапторным белком на пересечении между транс-

портом, клеточными соединениями и миграцией клеток, который играет 

значимую роль в направленной миграции и ангиогенезе, AMOTL1 и 

AMOTL2 также имеют своё значение для миграции клеток и ангиогене-

за (Huang T. et al., 2018). 

Образование плаценты включает не только процессы пролифера-

ции, и инвазии, но и дифференцировки экстраэмбриональных трофобла-

стических клеток. Неоднократно показана необходимость эстрогена для 

нормального течения дифференцировки трофобластов, которая осу-

ществляется через ERα (Cronier L. et al., 1999; Malassiné A. et al., 2002; 

Babischkin J.S. et al., 2001; Rama S. et al., 2004; Bukovsky А. et al., 2003a; 

Bukovsky А. et al., 2003b; Kumar P. et al., 2009).  

Стимулирование и регуляцию дифференцировки эстроген осу-

ществляет посредством факторов роста: IGF-1, IGF1-2, VEGF, bFGF, 

LIF, IGFBPs, EGF и членов его семейства (TGF-β, TGF-α, HB-EGF), а 

также MMP и лептина. (Forbes K. et al., 2010; Leduc K. et al., 2012; Mario 

T. et al., 1995а,б; Sferruzzi-Perri A.N. et al., 2017; Dakour J. et al., 1999; 

Lessey B.A. et al., 2014; Filardo E.J. et al., 2005; Armant D.R. et al., 2020; 

Bolnick A.D. et al., 2017). Насколько нам удалось обнаружить, большин-

ство ростовых факторов стимулирует дифференцировку цитотрофобла-

ста в направлении ворсинчатого цитотрофобласта, и только TGF-β1 ин-

гибирует дифференцировку цитотрофобласта in vitro и перенаправляет 

путь дифференцировки трофобласта из ворсинчатого фенотипа синци-

тиотрофобласта в формирование заякоривающих структур трофобласта 

(Handwerger S. et al., 2003). 
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Эстрогены индуцируют экспрессию семейства регуляторов роста 

CCN, являющихся одними из основных физиологических медиаторов 

ангиогенеза, а также принимающих участие в имплантации эмбриона и 

инвазии трофобласта (Zhao Y. et al., 2014; Yang R. et al., 2018). Два белка 

CCN (CCN1 and CCN3) играют ключевую роль в регуляции дифферен-

цировки клеток трофобласта, вызывая старение и улучшая миграцион-

ные свойства (Kipkeew F. et al., 2016). Эстрадиол может регулировать 

экспрессию синцитина (Carino C. et al., 2003), индуцирующего слияние 

между цитотрофобластами ворсин и формирование синцитиотрофобла-

ста (Denner J., 2016).  

В начале беременности эстрогены способствуют морфологическо-

му и функциональному росту, развитию и дифференцировки плаценты 

человека. Во второй половине беременности эстрогены стимулирут 

функциональное созревание (Pepe G.J., Albrecht E.D., 1999). Во-первых, 

эстрогены регулируют экспрессию рецепторов ЛПНП (Henson M.C. et 

al., 1991; Henson M.C. et al., 1992; Albrecht E.D. et al., 1991). Во-вторых, 

эстрогены активируют фермент цитохром Р450scc (Babischkin J.S. et al., 

1997), способствуя тем самым биосинтезу прогестерона в плаценте 

(Castracane V.D., 1986).  

Иными словами, одни стероидные гормоны влияют на образова-

ние других, и регулируют, таким образом, их действие. 

Показано действие эстрадиола на выработку хорионического го-

надотропина (Cronier L. et al., 1999), который оказывает трофическое 

влияние на имплантированное яйцо и прилегающие ткани, стимулирует 

развитие и секреторную активность жёлтого тела, участвует в регуляции 

биосинтеза прогестерона и эстрогенов в плаценте, способствует взаим-

ному превращению эстрогенов и андрогенов. Данные по другому белко-

вому гормону – плацентарномы лактогену противоречивы. Одни иссле-

дователи считают, что эстрогены стимулируют продукцию гормона в 

плаценте (Cronier L. et al., 1999), другие, наоборот, что подавляют (Mu-

sicki B. et al., 2003). 

Одновременно, эстрогены регулируют локализацию (Pepe G.J. et 

al., 2001) и развитие ферментной системы 11β-гидроксистероиддегидро-

геназы в синцитиотрофобласте, что повышает трансплацентарное окис-

ление материнского кортизола в кортизон и приводит к созреванию у 
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плода оси гипоталамус – гипофиз – надпочечник в конце беременности 

(Berkane N. et al., 2017; Pepe G.J., Albrecht E.D., 1995; Ramayya M.S., 

2001; Waddell B.J. et al., 1988). До ее формирования кортизол от матери 

свободно проникал к плоду и ингибировал фетальный синтез глюкокор-

тикоидов. После становления ферментной системы, 11β-

гидроксистероиддегидрогеназа II ингибирует 90 % кортикостероидов, 

поступающих в плаценту. Вследствие этого каскада событий происхо-

дит увеличение гипофизарной экспрессии проопиомеланокортин/АКТГ 

и ключевых ферментов, например, 3β-гидроксистероиддегидрогеназы и 

Р450c17 (Pepe G.J., Albrecht E.D.,1991; Pepe G.J., Albrecht E.D., 1995). 

Это приводит к адрено-кортикальной самообеспеченности: кора надпо-

чечников начинает продуцировать глюкокортикоиды, которые необхо-

димы для созревания плода и неонатальной выживаемости (Albrecht 

E.D., Pepe G.J., 2001).  

Тем не менее, надпочечники плода экспрессируют ERα и ERβ, и 

их активность контролируется эстрогенами (Kaludjerovic J., Ward W.E., 

2012). Высокие уровни эстрогенов подавляют реакцию надпочечников 

плода на адренокортикотропный гормон (Kaludjerovic J., Ward W.E., 

2012; Albrecht E.D. et al., 1999). Интересно отметить, что заметное сни-

жение уровня эстрадиола приводит к увеличению размеров надпочечни-

ков плода и усилению синтеза ДЭА (Albrecht E.D. et al., 2005). Все эти 

результаты предполагают жесткую ретрорегуляцию собственного син-

теза предшественников (т.е. ДЭА) с помощью эстрадиола.  

Следовательно, низкое содержание эстрадиола может вызывать 

более высокие уровни кортизола у плода, тем самым снижая образова-

ние плодового ДЭА (Berkane N. et al., 2017). 

Эстрогены модулируют стероидогенез в надпочечниках плода не-

сколькими способами. Эстрадиол косвенно увеличивает выработку ДЭА 

в фетальных надпочечниках за счет повышения продукции АКТГ, сти-

мулирующего синтез этого предшественника эстрогенов (Mesiano S., 

Jaffe R.B., 1993). Одновременно, он непосредственно ингибирует про-

дукцию ДЭА через снижение активности фермента P450c17 (Couch 

R.M., Muller J., Winter J., 1986). Последнее помогает также поддержи-

вать нормальный уровень эстрогенов при беременности (Pepe G.J., Al-

brecht E.D., 1995). 
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Эстрогены контролируют развитие фолликулов яичника плода 

(Albrecht E.D., Pepe G.J., 2010). Регуляция фоликулогенеза эстрогенами 

доказывается наличием ER, и рядом проведенных опытов, в которых 

при подавлении синтеза данных гормонов количество фолликулов зна-

чительно снижалось. Ооциты нуждаются в питательных веществах, ко-

торые получают из окружающих их клеток.  

Большое значение в этом процессе имеют микроворсинки. Эстро-

гены регулируют образование микроворсинок в яичниках плода. В отсут-

ствии гормонов ооциты имели значительно меньшее число ворсинок на 

плазматической мембране, обеспечивающих поглощение питательного 

субстрата из окружающих клеток. Что касается механизма, с помощью 

которого эстрогены осуществляют регуляцию, то его еще предстоит ис-

следовать. Предполагается, что для развития микроворсинок ооцитов 

требуется фосфорилирование связывающего белка – эзрина и экспрессия 

α-актинина, необходимого для завершающей стадии формирования мик-

роворсинки. Экспрессия α-актинина, а также локализации эзрин-фосфата 

и гена SLC9A3R1 (кодирующего эзрин-связывающий белок) в мембране 

ооцитов регулируются эстрогенами (Zachos N.C. et al., 2008). 

Помимо этого, эстрогены играют важную роль и в развитии легких, 

почек, печени, костной ткани плода (Seaborn T. et al., 2010; Rosenthal 

M.D. et al., 2004; Imai Y. et al., 2009; Kaludjerovic J., 2012). Эстрогены, как 

и андрогены, ингибируют спонтанные мышечные сокращения матки, тем 

самым поддерживая миометрий в расслабленном состоянии и помогая 

успешному донашиванию беременности (Tsai M.L. et al., 1998). 

Эстрогены оказывают влияние не только на развитие плода и пла-

центы, но и способствуют различным изменениям в организме матери, 

необходимым для поддержания беременности. 

Под действием эстрогенов изменяется не только кровообращение 

в маточно-плацентарной области, но и во всей сердечнососудистой си-

стеме (Pepe G.J., Albrecht E.D., 1995), в том числе и мозговой кровоток 

беременной женщины (Nevo O. et al., 2010). Например, во время бере-

менности наблюдается 40-50 % увеличение объема плазмы, 25 % увели-

чение массы эритроцитов и, следовательно, увеличение объема крови 

матери в целом. Эти изменения связаны с ростом сердечного выброса, 

повышением маточно-плацентарного кровотока, на долю которого при-
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ходится целых 25 % от всего объёма сердечного выброса, и 20-35 % 

снижение общего периферического сопротивления. Точные механизмы 

воздействия гормонов еще изучаются. Например, объем плазмы увели-

чивается в результате стимуляции эстрогеном ренин-ангиотензиновой 

системы, что приводит к увеличению продукции альдостерона и, следо-

вательно, реабсорбции ионов натрия и воды. 

Эстрогены участвуют в регуляции центральной гемодинамику за 

счет вазодилатации артерий, а также за счет повышения уровня 

11βHSD2, превращающей активный кортизол в неактивный кортизон. 

Это приводит к снижению вазоконстриктивной активности глюкокорти-

коидов (Berkane N. et al., 2017). 

Эстрогены увеличивают доступность белка в организме, поддер-

живают положительный баланс азота, тем самым обеспечивая рост пло-

да (King J.C., 2000). Их действие опосредуется через гипофизарно-

гонадная ось, что способствует регуляции когнитивных состояний, 

стресс-реакций, сна, сердечного ритма, температуры тела (Miller V.M., 

Duckles S.P., 2008; Napso T. et al., 2018). 

Считается, что эстрогены в период беремености имеют действие, 

противоположное прогестерону. Например, они повышают сократимость 

матки путем увеличения возбудимости миометрия через изменение мем-

бранного потенциала покоя и формирования «щелевых контактов», либо 

через повышение продукции простагландинов (Mesiano S., 2019). 

Широко распространено мнение, что эстрогены играют фундамен-

тальную роль в регуляции последовательности событий, приводящих к 

родам (Gibb W. et al., 2006). Они потенцируют серию изменений, вклю-

чающих увеличение продукции простагландинов G2 и F2, рост экспрес-

сии рецепторов простагландинов, рецепторов окситоцина, α-

адренергичекого агониста, модулирование кальциевых каналов мембра-

ны, повышение синтеза коннексина, регулирование фермента, ответ-

ственного за сокращения мышц – MLCK. Все эти изменения позволяют 

скоординировать сокращения матки (Kota S.K. et al., 2013). 

Итак, в период беременности эстрогены улучшают маточно-

плацентарный кровоток, способствуют неоваскуляризации плаценты (для 

оптимального газообмена и поступления питательных веществ, необхо-

димых для быстрого развития плода и плаценты). Эстрогены влияют на 
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выработку других стероидных и белковых гормонов, стимулируют рабо-

ту 11β-HSD в плаценте, регулируют экспрессию ЛПНП, осуществляют 

функциональную дифференцировку клеток трофобласта и выполняют 

многие другие функции. Считается, что эстрогены играют центральную, 

интегрирующую роль в модуляции диалога и сигнализации системы 

«плацента – плод», что способствует сохранению беременности. 

В начале беременности эстрадиол необходим для успешной им-

плантации эмбриона, децидуализации клеток эндометрия, пролифера-

ции, инвазии и дифференцировки трофобласта. Контроль за этими про-

цессами способствует правильному развитию сосудов, надежной пла-

центарной функции и рождению здорового ребенка.  

Данных о том, как ЦМВ влияет на экспрессию контролируемых 

эстрогенами регуляторов ангиогенеза, инвазии, пролиферации и диффе-

ренцировки клеток, недостаточно. Имеется описание изменений экспрес-

сии VEGF, PIGF (Maidji E. et al., 2010), EGFR (Fairley J.A. et al., 2002), 

PDGF (Gredmark S. et al., 2007), TGF-β (Liu T. et al., 2015), интегрина α1β1 

(Fisher S. et al., 2000), а также снижения активности MMP-2 и ММР-9 при 

ЦМВ инфекции (Yamamoto-Tabata T. et al., 2004; Liu T. et al., 2015). 

ЦМВ приспособлен для репликации в иммунной толерантной 

микросреде на границе между матерью и плодом (Pereira L. et al., 2005). 

Неоднократно указывалось на то, что ЦМВ распространяется в дециду-

альной оболочке и плаценте, а также продуктивно инфицирует тро-

фобласт in vitro и in utero (Pereira L. et al., 2005; Hemmings D.G. et al., 

1998; Sinzger C. et al.,1993; Mühlemann K. et al., 1992; Fisher S. et al., 

2000; Pereira L. et al., 2017). Рядом исследователей было обнаружено, 

что ЦМВ ингибирует пролиферацию, подавляет дифференцировку ци-

тотрофобласта и препятствует инвазии, даже в тех случаях, когда ре-

пликации вируса не было выявлено (Fisher S. et al., 2000; Pereira L. et al., 

2005; Tabata T. et al.,2015; Pereira L. et al., 2017; Pereira L., 2018; Schleiss 

M. et al., 2007; LaMarca H.L. et al., 2006; Schuhmann R. et al., 1972). 

Вполне вероятно, что снижение продукции эстрогенов при ЦМВ инфек-

ции в период беремененности вносит свой вклад в нарушение процессов 

формирования фетоплацентарного комплекса, что осложняет течение 

беременности и сопровождается угрозой невынашивания, плацентарной 

недостаточностью, внутриутробной гипоксией, задержкой роста плода, 

преждевременными родами.  
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ХОЛЕСТЕРОЛ В ПЛАЦЕНТЕ ПРИ ФИЗИОЛОГИЧЕСКОЙ 

И ОСЛОЖНЕННОЙ ЦИТОМЕГАЛОВИРУСНОЙ  

ИНФЕКЦИЕЙ БЕРЕМЕННОСТИ 

 

 

 

 

Синтез холестерола и его регуляция 

 

Холестерол необходим для развития организма. Он служит пред-

шественником ключевых стероидных гормонов, желчных кислот и ви-

тамина D, является структурным компонентом клеточных мембран (в 

которых защищает целостность мембраны и поддерживает микродоме-

ны с высоким содержанием холестерола, необходимые для большинства 

мембраносвязанных сигнальных каскадов), способствует снижению те-

кучести мембран, одновременно контролируя их проницаемость, участ-

вует в активации различных сигнальных путей, регулирующих процес-

сы роста, пролиферации и метаболизма.  

На ранних сроках беременности холестерол необходим для акти-

вации белка, участвующего в формировании нервных структур из нерв-

ной трубки (Jeong J., McMahon A.P., 2002; Villavicencio E.H., Walter-

house D.O., Iannaccone P.M., 2000). Кроме того, холестерол и изопренои-

ды необходимы для посттрансляционной модификации сигнальных бел-

ков, которые потенциально регулируют различные аспекты эмбрио-

нального развития. Транскрипты ГМГ-КоА-редуктазы обнаруживаются 

во время раннего эмбриогенеза, что свидетельствует о постоянной по-

требности в производных мевалоната для нормального развития. По-

следние исследования, проведенные на животных и in vitro, дали цен-

ную информацию о потенциальных морфогенных параметрах, которые 

модулируются активностью ГМГ-КоА-редуктазы. Они включают моз-

говой и черепно-лицевой морфогенез, миграцию и выживаемость пер-

вичных половых клеток, эпителия миокарда, эпителиальных клеток, а 

также стабилизацию сосудов (Eisa-Beygi S., Ekker M., Moon T.W. et al., 

2014). 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Jeong%20J%5BAuthor%5D&cauthor=true&cauthor_uid=12208857
https://www.ncbi.nlm.nih.gov/pubmed/?term=McMahon%20AP%5BAuthor%5D&cauthor=true&cauthor_uid=12208857
https://www.ncbi.nlm.nih.gov/pubmed/?term=Villavicencio%20EH%5BAuthor%5D&cauthor=true&cauthor_uid=11001584
https://www.ncbi.nlm.nih.gov/pubmed/?term=Walterhouse%20DO%5BAuthor%5D&cauthor=true&cauthor_uid=11001584
https://www.ncbi.nlm.nih.gov/pubmed/?term=Walterhouse%20DO%5BAuthor%5D&cauthor=true&cauthor_uid=11001584
https://www.ncbi.nlm.nih.gov/pubmed/?term=Iannaccone%20PM%5BAuthor%5D&cauthor=true&cauthor_uid=11001584
https://www.ncbi.nlm.nih.gov/pubmed/?term=Eisa-Beygi%20S%5BAuthor%5D&cauthor=true&cauthor_uid=24732207
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ekker%20M%5BAuthor%5D&cauthor=true&cauthor_uid=24732207
https://www.ncbi.nlm.nih.gov/pubmed/?term=Moon%20TW%5BAuthor%5D&cauthor=true&cauthor_uid=24732207
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Существует эндогенный и экзогенный источники холестерола. Эк-

зогенный холестерол поступает из рациона. Эндогенный холестерол 

синтезируется de novo. Холестерол образуется во всех тканях человека 

как до, так и после родов. В этой главе мы обсудим синтез холестерола 

при беременности. Его биосинтез происходит в эндоплазматическом ре-

тикулуме и цитозоле (Koczok K. et al., 2019). Считается, что источником 

всех атомов углерода, входящих в молекулу холестерола, является аце-

тил-КоА.  

Общая схема реакций синтеза выглядит следующим образом: 

 

6 ацетил-КoA + 6 ацетоацетил-KoA + 14 НАДФH + 14 H+ + 5 H2O + 18 ATФ +O2     

→     ланостерин + 14 НАДФ+ + 12 КoA-SH + 18 AДФ + 6 Фн + 4 ФФн + 6 CO2. 

 

Синтез холестерола происходит в несколько стадий (Cerqueira 

N.M. et al., 2016). На первом этапе образуется мевалонат, в состав кото-

рого входит шесть атомов углерода (рис. 27).  

 

 

 

 
Ацетил-КоА + Ацетил-КоА 

Ацетил-КоА 

 

КoASH 

 

Ацетил-КоА-ацетилтрансфераза 

(тиолаза) 

 

 Ацетоацетил-КоА  

 

 

 

Ацетил-КоА + Ацетоацетил-КоА 
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Рис. 27. Синтез холестерола (Miller K.J., 1998). 

 

Он синтезируется по «тиолазному» и «карбоксилазному» путям из 

ацетил-КоА (при этом нужно учитывать баланс необходимого материа-

ла биосинтеза, а именно, содержащийся в тканях ацетил-КоА) (Березов 

Т.Т., Коровкин Б.Ф., 1998; Климов А.Н., Никульчева Н.Г., 1999). Обра-

зование мевалоната происходит через синтез промежуточного вещества 

ГМГ-КоА, и протекает в цитозоле. На первом этапе две молекулы аце-

тил-КоА конденсируются под действием цитозольного фермента тиола-

зы с образованием ацето-ацетил-КоА. Затем в работу вступает другой 

фермент, катализирующий соединение ацетоацетил-KоА с ацетил-kоА с 

образованием ГМГ-KоА. Фермент называется ГМГ-KоА-синтаза, коди-

руемая геном HMGCS1. Ген HMGCS1 расположен на хромосоме 5p12 и 

состоит из 12 экзонов, которые генерируют две альтернативно сплайси-

рованные мРНК для двух различных изоформ: изоформы 1 и изоформы 

2 (King M.W., 2016; Leonard S. et al., 1986). Затем ГМГ-КоА превращает-

ся в мевалонат путем двухступенчатого восстановления за счет 

НАДФН, катализируемого ГМГ-КоА-редуктазой.  

Фермент связан с эндоплазматическим ретикулумом, кодируется 

геном, расположенным на хромосоме 5q13.3, состоит из 22 экзонов, ко-

торые генерируют две альтернативно сплайсированные мРНК для изо-

 

 

 

 

 

 

 

 Ланостерин  
 

2,3-оксидосквален-

ланостерин-циклаза 

(ланостеринсинтаза) 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Leonard%20S%5BAuthor%5D&cauthor=true&cauthor_uid=2870496
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формы 1 и изоформы 2 (King M.W., 2016). Восстановление ГМГ-KоА в 

мевалонат является практически первой необратимой реакцией в цепи 

биосинтеза холестерола. Реакция представляет собой лимитирующую 

стадию на пути синтеза холестерола, и является важным регуляторным 

этапом (Мари Р., Гренер Д., Мейес П. и др., 1993; Alphonse P.A., Jones 

P.J., 2016). Было показано, что здесь возможно воздействие со стороны 

ряда факторов, о которых будет сказано ниже.  

Существует возможность формирования мевалоновой кислоты и 

холестерола из малонил-КоА для различных биологических систем, ко-

торый включается в холестерол без предварительного карбоксилирова-

ния (Климов А.Н., Никульчева Н.Г., 1999).  

Наряду с классическим путем биосинтеза мевалоновой кислоты 

имеется второй путь, в котором в качестве промежуточного субстрата, 

по-видимому, образуется не β-гидрокси-β-метилглутарил-КоА, а β-

гидрокси-β-метилглутарил-S-АПБ (Березов Т.Т., Коровкин Б.Ф., 1998). 

Реакции этого пути идентичны начальным стадиям биосинтеза жирных 

кислот вплоть до образования ацетоацетил-S-АПБ. В образовании мева-

лоновой кислоты по этому пути принимает участие ацетил-КоА-

карбоксилаза – фермент, осуществляющий превращение ацетил-КоА в 

малонил-КоА.  

Оптимальное соотношение малонил-КоА и ацетил-КоА для синте-

за мевалоновой кислоты – 2 молекулы ацетил-КоА на 1 молекулу мало-

нил-КоА. Этот путь биосинтеза мевалоновой кислоты отмечен преиму-

щественно в цитозоле клеток печени. Регуляция второго пути биосинте-

за мевалоновой кислоты при ряде воздействий (голодание, кормление 

холестеролом, введение поверхностно-активного вещества тритона WR-

1339) отличается от регуляции первого пути, в котором принимает уча-

стие микросомная редуктаза. Эти данные свидетельствуют о существо-

вании двух автономных систем биосинтеза мевалоновой кислоты. Фи-

зиологическая роль второго пути окончательно не изучена. Полагают, 

что он имеет определенное значение не только для синтеза веществ не-

стероидной природы, таких, как боковая цепь убихинона и уникального 

основания N6-(Δ2-изопентил)-аденозина некоторых тРНК, но и для био-

синтеза стероидов. Мевалонат фосфорилируется АТФ с образованием 

ряда активных фосфорилированных интермедиантов. 

http://www.xumuk.ru/encyklopedia/566.html
http://www.xumuk.ru/biospravochnik/5.html
http://www.xumuk.ru/encyklopedia/566.html
http://www.xumuk.ru/encyklopedia/2/4751.html
http://www.xumuk.ru/encyklopedia/2650.html
http://www.xumuk.ru/encyklopedia/2650.html
http://www.xumuk.ru/encyklopedia/566.html
http://www.xumuk.ru/biospravochnik/160.html
http://www.xumuk.ru/encyklopedia/566.html
http://www.xumuk.ru/encyklopedia/566.html
http://www.xumuk.ru/encyklopedia/2/5071.html
http://www.xumuk.ru/encyklopedia/721.html
http://www.xumuk.ru/biospravochnik/704.html
http://www.xumuk.ru/encyklopedia/566.html
http://www.xumuk.ru/encyklopedia/721.html
http://www.xumuk.ru/encyklopedia/2/4627.html
http://www.xumuk.ru/encyklopedia/566.html
http://www.xumuk.ru/encyklopedia/566.html
http://www.xumuk.ru/encyklopedia/2/4219.html
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На следующем этапе синтеза холестерола происходит фосфорили-

рование и декарбоксилирование с образованием промежуточного про-

дукта изопентенилпирофосфата в результате трех последовательных ре-

акций, катализируемых мевалонаткиназой, фосфомевалонаткиназой и 

дифосфомевалонатдекарбоксилазой (Cerqueira N.M. et al., 2016). У чело-

века мевалонаткиназа локализуется в пероксисомах, кодируется геном 

MVK, расположенным на хромосоме 12q24 и состоящим из 12 экзонов, 

которые генерируют три альтернативно сплайсированные мРНК. Фос-

фомевалонаткиназа также является пероксисомальным ферментом, про-

дуктом гена PMVK, состоящего из 6 экзонов и расположенного на хро-

мосоме 1q22. Дифосфомевалонатдекарбоксилаза (называемая также ме-

валонат-5-пирофосфатдекарбоксилаза) кодируется геном MVD, распо-

ложенном на хромосоме 16q24.3 и состоящим из 13 экзонов (King M.W., 

2016). Катализируемая ею реакция требует присутствия АТФ. Образу-

ющийся изопентенилпирофосфат находится в равновесии со своим изо-

мером, диметилаллилпирофосфатом, посредством действия изопенте-

нилдифосфат-дельтаизомеразы (также называемой изопентенилпиро-

фосфатизомеразой). Экспрессируется два изопентенилдифосфатизоме-

разных гена: IDI1 и IDI2, расположенных на хромосоме 10p15.3 (King 

M.W., 2016). 

Затем происходит конденсация трех молекул изопентенилпиро-

фосфата (С5) с образованием фарнизилпирофосфата (С15), две молекулы 

которого, в свою очередь, конденсируются концами, несущими пиро-

фосфатные группы и превращаются в сквален (С30). Следует отметить, 

что может функционировать побочный путь, который называют «транс-

метилглюконатный шунт». Изопентенилпирофосфат – является тем 

структурным элементом, из которого строятся все изопреноиды, в том 

числе и цитокины, а фарнизилпирофосфат используется для синтеза 

других полиизопреноидов, таких, как убихинон, гемм А, долихол с по-

мощью транс- и цис- пренилтрансферез (Мари Р. и др., 1993; Cerqueira 

N.M. et al., 2016). Синтез фарнизилпирофосфата катализируется фер-

ментом фарнезилдифосфатсинтазой (геранилтрансферазой).  

Фарнезилдифосфатсинтаза – продукт гена FDPS, расположенного 

на хромосоме 1q22 и состоящего из 11 экзонов, которые генерируют 

пять альтернативно сплайсированных мРНК, кодирующих вместе три 

различные изоформы фермента (King M.W., 2016). 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Cerqueira%20NM%5BAuthor%5D&cauthor=true&cauthor_uid=27604037
https://www.ncbi.nlm.nih.gov/pubmed/?term=Cerqueira%20NM%5BAuthor%5D&cauthor=true&cauthor_uid=27604037
https://www.ncbi.nlm.nih.gov/pubmed/?term=Cerqueira%20NM%5BAuthor%5D&cauthor=true&cauthor_uid=27604037
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Синтез сквалена из фарнизилпирофосфата представляет собой 

первую стадию, специфичную для пути синтеза холестерола. Это связа-

но с тем, что несколько промежуточных продуктов, как было сказано 

выше, могут быть использованы на производство других биологически 

релевантных молекул. Синтез сквалена катализируется ферментом 

фарнезилдифосфат-фарнезилтрансфераза 1 (обычно называемый сква-

ленсинтазой). Реакция проходит с затратой НАДФН, и высвобождаются 

две молекулы пирофосфата. Фарнезилдифосфат-фарнезилтрансфераза 1 

(кодируемая геном FDFT1) катализирует двухступенчатую конденсацию 

между двумя молекулами фарнизилпирофосфата, приводящую к сква-

лену. Ген FDFT1 расположен на хромосоме 8p23.1 и состоит из 14 экзо-

нов, которые генерируют 11 альтернативно сплайсированных мРНК. 

Эти 11 различных FDFT1-кодируемых мРНК в совокупности синтези-

руют пять различных изоформ фарнезилдифосфат-

фарнезилтрансферазы.  

Сквален имеет структуру, подобную стероидному ядру. Перед 

стадией циклизации сквален превращается в эндоплазматическом рети-

кулуме в 2,3- оксид сквалена под действием скваленэпоксидазы (также 

называемой сквален-монооксигеназой). Этот фермент использует 

НАДФH в качестве кофактора для введения молекулярного кислорода 

(что отличает этот этап от предыдущих реакций) в виде эпоксида в по-

ложении 2,3 сквалена (Padyana A.K. et al., 2019; Porter T.D., 2015). На 

второй стадии промежуточное эпоксидное соединение превращается в 

ланостерин посредством действия мембраносвязанного фермента – ла-

ностеринсинтазы (2,3-оксидосквален-ланостерин-циклазы).  

Примечательно то, что у высших организмов образование стеро-

идного каркаса катализируется исключительно этим энзимом. При цик-

лизации, катализируемой оксидосквален-ланостерин-циклазой, проис-

ходит перенос метильных групп у 14 и 8 атомов углерода: С14 на С13 и 

С8 на С9 (Thoma R., Schulz-Gasch T., D’Arcy B. et al., 2004). Сквале-

нэпоксидаза продуцируется геном SQLE, который расположен на хро-

мосоме 8q24.13 и состоит из 12 экзонов. Ланостеринсинтаза кодируется 

геном LSS, который расположен на хромосоме 21q22.3 и состоит из 25 

экзонов. LSS генерирует четыре альтернативно сплайсированные мРНК, 

которые вместе генерируют три различных изоформы фермента.  
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На последнем этапе ланостерин превращается в мембранах эндо-

плазматической сети в холестерол, при этом происходят изменения в 

стероидном ядре и боковой цепи. Последовательность реакций здесь 

может варьировать (рис. 28).  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
     

 

 

 

Рис. 28. Пути синтеза холестерола на третьем этапе  

(Sharpe L.J., Brown A.J., 2013). 

 

Различные альтернативные пути существуют потому, что восста-

новление двойной связи между 24 и 25 углеродными атомами на боко-

вой цепи стериновой кольцевой структуры может происходить на мно-

гих точках пути, что приводит к образованию разных промежуточных 

продуктов. Эти промежуточные продукты могут служить субстратами 

для других ферментов биосинтеза. Предложено несколько возможных 

вариантов биосинтеза холестерола (Уайт А. и др., 1981; Ačimovič J. et 
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al., 2016; Cerqueira N.M. et al., 2016; Gaylor J.L., 2002; Koczok K. et al., 

2019; Masterjohn C., 2005; Sharpe L.J., Brown A.J., 2013). Наиболее веро-

ятным считается путь через 7-дегидрохолестерин, который может слу-

жить в качестве прямого предшественника холестерола при восстанов-

лении 7,8-двойной связи. По другому пути окисляются метильные груп-

пы у 14 атома углерода, полученное вещество называется десметилла-

ностерол, затем у 4 атома углерода с образованием зимостерола. В ре-

зультате нескольких перемещений в кольце В двойная связь появляется 

в положении между 5 и 6 атомами углерода, что характерно для молеку-

лы холестерола, образуется десмостерол. Наконец, в результате восста-

новления двойной связи в боковой цепи образуется холестерол. Восста-

новление двойной связи, может проходить и на предшествующих стади-

ях биосинтеза холестерола (Уайт А. и др., 1981; Masterjohn C., 2005; 

Sharpe L.J., Brown A.J., 2013).  

Примечательно, что до настоящего времени точно не идентифици-

рованы ферменты, катализирующие реакции на третьем этапе холесте-

риногенеза. Одно из последних исследований касалось 17βHSD7. Ока-

залось, что этот фермент кроме способности превращать эстрон в эстра-

диол, имеет двойную энзиматическую функциональность. Он участвует 

в биосинтезе холестерола на постскваленовой стадии: в преобразовании 

зимостерона в зимостерол (Marijanovic Z., Laubner D., Möller G. et al., 

2003; Ohnesorg T., Keller B., Hrabé de Angelis M. et al., 2006). Терми-

нальным энзимом холестериногенеза фермент может являться 7-

дегидрохолестерин редуктаза (Dhcr7) (Bae S.H. et al.,1999).  

Синтез холестерола регулируется белком острого стероидогенного 

ответа (StAR), который обеспечивает доступ стероида к важным сайтам 

биосинтеза – митохондриям (Miller W.L., 2013).  

Кроме того, основной контрольной точкой на пути образования 

холестерола является фермент ГМГ-КоА-редуктаза. Фермент контроли-

руется четырьмя различными механизмами: ингибирование по принци-

пу обратной связи, контроль экспрессии гена, регуляция скорости де-

градации фермента и фосфорилирование-дефосфорилирование. Первые 

три механизма контроля могут осуществляються с помощью самого хо-

лестерола. Холестерол действует как ингибитор обратной связи, а также 

вызывает быстрое разложение фермента (Уайт А. и др., 1981; Gibbons 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Cerqueira%20NM%5BAuthor%5D&cauthor=true&cauthor_uid=27604037
https://www.ncbi.nlm.nih.gov/pubmed/?term=Gaylor%20JL%5BAuthor%5D&cauthor=true&cauthor_uid=11969204
https://www.ncbi.nlm.nih.gov/pubmed/?term=Sharpe%20LJ%5BAuthor%5D&cauthor=true&cauthor_uid=23696639
https://www.ncbi.nlm.nih.gov/pubmed/?term=Brown%20AJ%5BAuthor%5D&cauthor=true&cauthor_uid=23696639
https://www.ncbi.nlm.nih.gov/pubmed/?term=Sharpe%20LJ%5BAuthor%5D&cauthor=true&cauthor_uid=23696639
https://www.ncbi.nlm.nih.gov/pubmed/?term=Brown%20AJ%5BAuthor%5D&cauthor=true&cauthor_uid=23696639
https://www.ncbi.nlm.nih.gov/pubmed/?term=Miller%20WL%5BAuthor%5D&cauthor=true&cauthor_uid=23628605
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G.F. et al., 1982). Кроме того, избыток холестерола уменьшает количе-

ство мРНК для ГМГ-КоА-редуктазы в результате снижения экспрессии 

гена (King M.W., 2016). Оксистерины, образующиеся при окислении хо-

лестерола, также тормозят биосинтез, регулируя его гемостаз в организ-

ме (Антончик А.В. и др., 2007; Afonso M.S. et al., 2018).  

Регуляция ГМГ-КоА-редуктазы посредством ковалентной моди-

фикации происходит в результате фосфорилирования и дефосфорилиро-

вания. Фермент наиболее активен в своей немодифицированной форме. 

Фосфорилирование фермента снижает его активность. ГМГ-КоА-

редуктаза фосфорилируется AMФ-активируемой протеинкиназой – 

AMФK (которую не следует путать с цАМФ-зависимой протеинкина-

зой).  

Активность ГМГ-КоА-редуктазы дополнительно контролируется 

сигнальным путем, включающим цАМФ. Так как внутриклеточный уро-

вень цАМФ регулируется гормональными стимулами, то и регуляция 

биосинтеза холестерола контролируется рядом гормонов. Так, инсулин 

и тироксин приводят к снижению цАМФ, что в свою очередь активиру-

ет синтез холестерола. Наоборот, глюкагон и адреналин, повышающие 

уровень цАМФ, тормозят синтез холестерола. 

Способность инсулина стимулировать, а глюкагона ингибировать 

активность ГМГ-КоА-редуктазы согласуется с действием этих гормонов 

на другие метаболические пути. Основная функция этих двух гормонов 

– контролировать доступность и доставку энергии всем клеткам орга-

низма.  

Такой тип контроля (включающий фосфорилирование и дефосфо-

рилирование) относится к краткосрочному типу регулирования. Долго-

срочное регулирование синтеза холестерола происходит путем образо-

вания и деградации ГМГ-КоА-редуктазы и других ферментов пути син-

теза.  

Следующий вид контроля, о котором следует сказать – это регу-

лируемая транскрипция. Одним из ключевых регуляторов транскрипции 

ГМГ-KоА является белок SREBP-2 (sterol regulatory element-binding 

protein) (Horton J.D.,2002; Sharpe L.J., Brown A.J., 2013).  

SREBPs экспрессируются в форме предшественников, которые яв-

ляются интегральными белками мембран эндоплазматического ретику-

https://www.ncbi.nlm.nih.gov/pubmed/?term=Sharpe%20LJ%5BAuthor%5D&cauthor=true&cauthor_uid=23696639
https://www.ncbi.nlm.nih.gov/pubmed/?term=Brown%20AJ%5BAuthor%5D&cauthor=true&cauthor_uid=23696639
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лума. Активация SREBPs происходит в комплексе Гольджи. Этап пере-

хода SREBP из эндоплазматического ретикулума в комплекс Гольджи 

(и, следовательно, последующая активация) негативно контролируется 

оксистеринами (например, 27-гидроксихолестерин или 24(S),25- 

эпоксихолестерин). Этот контроль осуществляется через белок SCAP 

(SREBP cleavage-activating protein – белок расщепления-активации 

SREBP). Изменение конформации SCAP или его взаимодействия с до-

полнительным регуляторным белком – продуктом индуцируемого инсу-

лином гена 1 (INSIG-1) при снижении уровня липидов в клетке приво-

дит к переходу комплексов SCAP/SREBP в транспортные везикулы эн-

доплазматического ретикулума и транспортировке в комплекс Гольджи. 

Данный механизм служит одним из способов ауторегуляции биодина-

мики холестерола: повышенный уровень холестерола через оксистери-

ны и SCAP блокирует активацию SREBP, что сдерживает поступление 

холестерола в клетки и биосинтез холестерола de novo (Смирнов А.Н., 

2008; Alphonse P.A., Jones P.J., 2016). 

Следующяя точка контроля синтеза холестерола происходит на 

более поздней стадии, катализируемой сквален-монооксигеназой (сква-

лен-эпоксидазой), ферментом, участвующим в превращении сквалена в 

2,3-монооксидоксвален, предшественник ланостерола. Транскрипция 

данного энзима также контролируется SREBP-2 (Afonso M.S. et al., 

2018). 

Следует отметить, что исследование регуляции холестерола, осо-

бенно на стадии транскрипции, активно ведется и в настоящее время. 

Так, например, обнаружено, что регуляторную роль в синтезе холесте-

рола и сквалена прямо или косвенно играет ядерный рецептор Rev-erb, 

который непосредственно связывается с большинством генов, участву-

ющих в биосинтезе холестерола, подавляя их экспрессию (Sitaula S. et 

al., 2017).  

Гонадолиберин усиливает экспрессию ключевых генов синтеза 

холестерола (Rosati F., Sturli N., Cungi M.C. et al., 2011). 

Кроме того, анализ одного из терминальных энзимов холестероло-

генеза – 7-дегидрохолестеринредуктазы (Bae S.H. et al., 1999) показал 

возможность регуляции на постланостериновой стадии (Kim J.H. et al., 

2001).  

https://www.ncbi.nlm.nih.gov/pubmed/?term=Bae%20SH%5BAuthor%5D&cauthor=true&cauthor_uid=10329655
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В литературе последних лет процессы синтеза холестерола отра-

жены в недостаточной степени. Однако исследования продолжаются. В 

основном, они касаются ингибиторов ферментов синтеза холестерола 

(Sharpe L.J., Brown A.J., 2013), в большинстве случаев – ГМГ-КоА-

редуктазы (Hashemi M., Hoshyar R., Ande S.R. et al., 2017; Moselhy S.S., 

Kamal I.H., Kumosani T.A. et al., 2016). Продолжаются изыскания в обла-

сти третьего этапа образования стероида (Ačimovič J. et al., 2016). Инте-

ресными являются данные о влиянии ферментов холестериногенеза на 

развитие беременности (Alarcon V.B., Marikawa Y., 2016). Согласно им, 

активность ГМГ-КoA-редуктазы необходима для спецификации трофэк-

тодермы, а именно, формирования полости бластоцисты. Предполагают, 

что ГМГ-КoA-редуктаза (а также весь метаболический путь 

SREBP/мевалонат) участвует в образовании бластоцисты, регулируя ак-

тивность YAP пути – важного медиатора роста и пролиферации (Sorren-

tino G. et al., 2014). 

 

 

Синтез холестерола в плаценте при физиологической и  

осложненной цитомегаловирусной инфекцией беременности 

 

Формирование ферментных систем биосинтеза холестерола в он-

тогенезе происходит на самых ранних этапах развития плода. Однако в 

стероидогенных органах эти процессы идут не синхронно (Цирельников 

Н.И., 1980; Diczflusy E., 1964; 1969; Diczflusy E. et al., 1965; Khamsi F. et 

al., 1972; Telegdy G. et al., 1970; 1971). Так в плаценте человека в сере-

дине беременности биосинтез из ацетата доходит лишь до стадии сква-

лена или ланостерина и еще нет дальнейшего их превращения в холе-

стерол, в тоже время в надпочечниках этих плодов биосинтез уже за-

вершается образованием холестерола (Telegdy G. et al., 1970). Такая точ-

ка зрения (Хеффнер Л., 2003) сформировалась после исследований, про-

веденных Telegdy G. и Diczfalusy E. с соавторами (1970). 

Тем не менее, существуют другая точка зрения, которой придер-

живаемся и мы. Она указывает на то, что зародыш не получает весь хо-

лестерол от матери, и свою полную потребность в нем удовлетворяет 

через дополнительные источники синтеза. Рост и развитие плода требу-

https://www.ncbi.nlm.nih.gov/pubmed/?term=Sharpe%20LJ%5BAuthor%5D&cauthor=true&cauthor_uid=23696639
https://www.ncbi.nlm.nih.gov/pubmed/?term=Brown%20AJ%5BAuthor%5D&cauthor=true&cauthor_uid=23696639
https://www.ncbi.nlm.nih.gov/pubmed/?term=Hashemi%20M%5BAuthor%5D&cauthor=true&cauthor_uid=26758949
https://www.ncbi.nlm.nih.gov/pubmed/?term=Hoshyar%20R%5BAuthor%5D&cauthor=true&cauthor_uid=26758949
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ande%20SR%5BAuthor%5D&cauthor=true&cauthor_uid=26758949
https://www.ncbi.nlm.nih.gov/pubmed/?term=Moselhy%20SS%5BAuthor%5D&cauthor=true&cauthor_uid=27358648
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kamal%20IH%5BAuthor%5D&cauthor=true&cauthor_uid=27358648
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kumosani%20TA%5BAuthor%5D&cauthor=true&cauthor_uid=27358648
https://www.ncbi.nlm.nih.gov/pubmed/?term=Alarcon%20VB%5BAuthor%5D&cauthor=true&cauthor_uid=26908642
https://www.ncbi.nlm.nih.gov/pubmed/?term=Marikawa%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=26908642
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ет огромные количества холестерола для строительства мембран, гор-

монов и белков, особенно много его нужно для становления нервной си-

стемы. Для ребенка весом 4,5 кг организму требуется почти 15 г холе-

стерола (Woollett L., Heubi J.E., 2016). 

О возможности синтеза холестерола в плаценте свидетельствуют 

результаты, полученные еще в 1979 году E.R. Simpson с соавторами 

(Simpson E.R., Bilheimer D.W., MacDonald P.C. et al., 1979). Было уста-

новлено, что в отсутствии липопротеиды низкой плотности, которые 

должны поставлять холестерол из материнского организма, клетки хо-

риокарциномы человека продуцируют стероидные гормоны. Синтез хо-

лестерола осуществлялся и при недостаточности липопротеидных ре-

цепторов из-за генетических дефектов (Parker C.R., Illingworth D.R., Bis-

sonette J. et al., 1986). В этой связи был проведен ряд опытов, в которых 

было доказано, что образование данного стероида может быть в плацен-

те (Shi W., Swan K.F., Lear S. R. et al., 1999; Belknap W. M., Dietschy J. 

M., 1988; Loganath A., Peh K.L., Wong Y.C. et al., 2000). 

Синтез холестерола происходит в три этапа:  

1) Биосинтез мевалоновой кислоты.  

2) Образование сквалена из мевалоновой кислоты.  

3) Циклизация сквалена и образование холестерола.  

При анализе доступных литературных источников не удалось об-

наружить гистохимических маркеров, позволяющих оценить холестери-

ногенез в плаценте. Нами были разработаны гистохимические методы 

оценки холестерологенеза, включающие идентификацию сквалена, ме-

валоната и 7-дегидрохолестерина с последующей цитофотометрической 

обработкой снимков при компьютерной обработке срезов ворсинчатого 

хориона и зрелой плаценты при физиологической и осложненной ЦМВ 

инфекцией беременности.  

Первым этапом холестерологенеза является образование мевало-

ната. Эта реакция является первой необратимой и специфической в цепи 

биосинтеза холестерола. Предшествующие этапы могут использоваться 

в том числе и для синтеза кетоновых тел. Реакция образования мевало-

ната считается также и реакцией, регулирующей скорость всего процес-

са. Причем следует отметить, что исследователи придерживаются той 

точки зрения, что на данном этапе контролируется не только синтез хо-

https://www.ncbi.nlm.nih.gov/pubmed?term=Woollett%20L%5BAuthor%5D&cauthor=true&cauthor_uid=27809441
https://www.ncbi.nlm.nih.gov/pubmed?term=Heubi%20JE%5BAuthor%5D&cauthor=true&cauthor_uid=27809441
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лестерола, но и синтез некоторых стероидных гормонов (Дедов И.И. и 

др., 2000).  

Согласно полученным результатам цитофотометрического анализа 

в трофобластах ворсин хориона ранней и зрелой плацент было выявлено 

уменьшение средних показателей мевалоната на сроке 4-6 недель до 

5,58±0,072 пиксель/мкм2 (р<0,05), на сроке 7-8 недель – до 6,61±0,083 

пиксель/мкм2 (р<0,05), на сроке 9-10 недель – до 8,73±0,081 пик-

сель/мкм2 (р<0,01), на сроке 36-37 недель– до 22,34±0,079 пиксель/мкм2 

(р<0,001) (физиологическое течение беременности – 8,23±0,086 пик-

сель/мкм2, 10,36±0,089 пиксель/мкм2, 12,45±0,090 пиксель/мкм2, 

34,67±0,077 пиксель/мкм2  соответственно).  

Пример распределения продуктов гистохимической реакции на 

мевалонат в трофобластах ворсинчатого хориона на сроке 6 недель бе-

ременности представлен на рисунках 29 и 30.  
 

 

 

 

 

Рис. 29. Ворсинчатый хорион. 6 

нед. беременности. Физиологиче-

ское течение беременности. Ин-

тенсивность гистохимической 

реакции на мевалонат высокая. 

Увел. 15х40. 

 

 

 

 

 

Рис. 30. Ворсинчатый хорион. 6 

нед. беременности. Обострение 

ЦМВ инфекции на сроке 3 нед. 

Интенсивность гистохимической 

реакции на мевалонат низкая. 

Увел. 15х40. 
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Обнаруженная четкая локализация мевалоната в хориальном тро-

фобласте доказывала наличие данной стадии синтеза холестерола в пла-

центе. Присутствие этой стадии холестерологенеза в этом органе было 

доказано практически всеми исследователями, занимающимися данной 

проблемой (Цирельников Н.И., 1980; Telegdy G.,Weeks J.W.,1970; 

Diczflusy E., 1969; Khamsi F., 1972). Однако некоторые авторы считают, 

что главной «метаболической мишенью» метаболизма мевалоната в 

плаценте человека на ранних этапах беременности является пренилиро-

вание синтеза белка (присоединение гидрофобных остатков изопренои-

дов: фарнезила и геранилгеранила), а не образование холестерола 

(Bogusławski W., 1999). 

Следующий этап синтеза холестерола – образование сквалена, ко-

торый отчетливо выявляется в плаценте несмотря на то, что, по мнению 

ряда ученых, синтез холестерола в ней идет не до конца (Telegdy G., 

Weeks J.W., 1970). В подтверждение сказанному на рисунках 31 и 32 

приведен пример распределения продуктов гистохимической реакции на 

сквален в трофобластах ворсинчатого хориона на сроке 6 недель бере-

менности.  

Цитофотометрически установлено снижение средних показателей 

сквалена  при беременности, осложненной ццитиомегаловирусной ин-

фекцией, на сроке 4-6 недель до 2,62±0,011 пиксель/мкм2 (р<0,05), на 

сроке 7-8 недель – до 5,75 ± 0,057 пиксель/мкм2 (р<0,05), на сроке 9-10 

недель – до 9,94 ± 0,084 пиксель/мкм2 (р<0,01), на сроке 37-38 недель – 

до 22,07±0,083 пиксель/мкм2 (р<0,001) (для сравнения, при физиологи-

ческом течении беременности: 4,19 ± 0,012 пиксель/мкм2, 8,15±0,077 

пиксель/мкм2,  12,31±0,083 пиксель/мкм2,  33,81±0,095 пиксель/мкм2   

соответственно).  

Последним этапом холестерологенеза является превращение сква-

лена в ланостерин, который уже имеет в своем составе тетрацикличе-

ское ядро, и в конечном итоге, непосредственно, в сам холестерол. 

Наиболее вероятным считается путь через 7-дегидрохолестерин (Уайт 

А., Хендлер Ф., Смит Э. и др., 1983). Для того чтобы доказать присут-

ствие этого этапа в плаценте и оценить его активность, мы осуществили 

выявление фермента, маркирующего превращения 7-

дегидрохолестерина.  
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Рис. 31. Ворсинчатый хорион. 6 

нед. беременности. Физиологиче-

ское течение беременности. Ин-

тенсивность гистохимической 

реакции на сквален высокая. Увел. 

15х40. 

 

 

 

 

 

Рис. 32. Ворсинчатый хорион. 6 

нед. беременности. Обострение 

ЦМВ инфекции на сроке 3 нед. 

Интенсивность гистохимической 

реакции на сквален низкая. Увел. 

15х40. 

 

Был разработан гистохимический метод, основанный на восста-

новлении соли тетразолия в формазан электронами, акцептируемыми от 

7-дегидрохолестерина через кофермент НАДФ, пример которого пред-

ставлен на рисунках 33 и 34.  
 

 

 

 

Рис. 33. Ворсинчатый хорион. 6 

нед. беременности. Физиологиче-

ское течение беременности. Ин-

тенсивность гистохимической ре-

акции на 7-дегидрохолестерин вы-

сокая. Реакция по З. Лойда. Увел. 

15х40.  
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Рис. 34. Ворсинчатый хорион. 6 

нед. беременности. Обострение 

ЦМВ инфекции на сроке 3 нед. 

Интенсивность гистохимической 

реакции на 7-дегидрохолестерин-

дегидрогеназу низкая. Реакция по 

З. Лойда. Увел. 10х40. 

 

 

Цитофотометрические показатели 7-дегидрохолестерина в тро-

фобластах ворсин хориона ранней и зрелой плаценты на сроке 4-6 

недель составили 2,63±0,021 пиксель/мкм2 (р<0,001), на сроке 7-8 

недель – 7,79±0,079 пиксель/мкм2 (р<0,01), на сроке 9-10 недель – 

8,93±0,083 пиксель/мкм2 (р<0,01), на сроке 37-38 недель – 32,67±0,087 

пиксель/мкм2 (р<0,001), что значимо меньше, чем при физиологическом 

течении беременности (4,88±0,041 пиксель/мкм2, 10,02±0,086 пик-

сель/мкм2, 12,26±0,094 пиксель/мкм2, 44,89±0,113 пиксель/мкм2 соответ-

ственно). 

В заключение следует отметить, что полученые нами результаты 

доказывают предположение о наличии холестериногенеза и его участия 

в гистогенезе плаценты. ЦМВ в период беременности вносит отрица-

тельный вклад в интенсивность реакций исследуемых прекурсоров сте-

роида, что способствует развитиию эндокринных нарушений, опреде-

ляющих развитие плацентарной недостаточности и неблагоприятные 

последствия для плода. 

 

 

Характер отношений холестерол – липопротеиды низкой  

и высокой плотности в периферической крови женщин при 

осложненной ЦМВ инфекцией беременности 

 

Согласно данным, представленным в таблице 8, показатели холе-

стерола (ХС) в периферической крови и гомогенате ворсинчатого хори-

она ранней и зрелой плаценты от женщин с физиологическим течением 
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беременности увеличивались по мере нарастания срока беременности. 

Данный факт объясняется физиологическими причинами (Bartels Ä., 

O'Donoghue K., 2011), среди которых ведущее место занимает участие 

холестерола в стероидогенезе и регуляции процессов, связанных с ги-

стогенезом плаценты. В этот период печень беременной начинает ак-

тивно вырабатывать холестерол, который транспортируется к тканям, в 

том числе плаценте, в виде ЛПНП.  

 

Таблица 8. Содержание холестерола в периферической крови беременных жен-

щин и гомогенате ворсинчатого хориона ранней и зрелой плаценты при физио-

логической и осложненной ЦМВ инфекцией беременности (ммоль/л) 

 

  

Биохимические исследования периферической крови беременных 

женщин и ворсинчатого хориона ранней и зрелой плаценты с обостре-

нием ЦМВ инфекции на сроках 4-10 и 37-38 недель беременности пока-

зали значимое снижение средних показателей холестерола, наиболее 

выраженное в тканевом гомогенате.  

Снижение содержания холестерола при беременности осложнен-

ной ЦМВ инфекцией обусловлено, по нашему мнению, нарушением его 

биосинтеза, либо увеличением перехода из плазматических мембран в 

липопротеиды с низким его содержанием – липопротеиды высокой 

плотности при действии лецитинхолестеринацилтрансферазы. Еще од-

ной причиной могло быть снижение уровня эстрогенов – регуляторов 

холестриногенеза (Azhar S. et al., 1985; Bartels Ä., O'Donoghue K., 2011; 

Philip B.W. et al., 1981). В итоге формируется порочный круг взаимосвя-

занных патологических процессов, когда пониженная продукция холе-

Сроки  

беременности 

Материал Обострение 

ЦМВ  

инфекции 

Р Физиологиче-

ское течение  

беременности 

4-10 недель  Периферическая 

кровь 

Ворсинчатый  

хорион 

5,00 ± 0,09 

 

1,12 ± 0,093 

<0,05 

 

<0,001 

5,63 ± 0,07 

 

3,14±0,091 

37-38 недель Периферическая 

кровь 

Зрелая плацента 

6,24 ± 0,11 

 

2,01 ± 0,123 

<0,01 

 

<0,001 

7,79 ± 0,12 

 

4,65 ± 0,413 
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стерола ассоциировалась с уменьшением образования эстрогенов, малая 

концентрация которых была не способна регулировать синтез предше-

ственника.  

Самый устойчивый стереотип – это патогенность высокого уровня 

холестерола (Bartels Ä., O'Donoghue K., 2011; Jayalekshmi V.S., 

Ramachandran S., 2020; Palinski W. et al., 2002; 2007) для беременных, 

однако, исследования последних лет свидетельствуют о том, что пони-

женный его уровень оказывает еще более негативные последствия. По 

данным некоторых исследователей (Muenke M., Gordon S., 2004; Edison 

R. J. et al., 2007; Mac Dougall R., 2015; Merialdi M., Murray J.C., 2007; 

Okala S.G. et al., 2020) низкий уровень холестерола в крови беременных 

женщин напрямую связан с преждевременными родами, низким весом 

новорожденного и тенденцией к микроцефалии.  

Дальнейшее исследование показало наличие нарушения в обмене 

холестерол – липопротеиды высокой плотности, проявляющееся в 

накоплении данной фракции липопротеидов в периферической крови 

беременных женщин с обострением цитомегаловирусной инфекции на 

сроках 4-10 и 37-38 недель беременности, что, по-видимому, явилось 

компенсаторной реакцией, направленной на снижение токсичных ради-

калов, присутствующих в организме. И это оправдано, т.к. ЛПВП обла-

дают антиатерогенным действием, что обусловлено наличием в них ан-

тиоксидантных ферментов, способных метаболизировать гидроперекиси 

в ЛПНП, и таким образом, защищать их от пероксидации.  

Вместе с тем в более ранних литературных источниках имеются 

сведения в пользу отсутствия изменений в концентрации липопротеиды 

высокой плотности в период беременности (Husain F., 2008). Хотя в 

настоящее время встречается все больше сведений о динамическом ро-

сте ЛПВП на протяжении всей беременности  (Haque S. et al., 2020; Jin 

W.Y., et al., 2016; Piech P., Adamowicz R., 2000), что находит подтвер-

ждение в наших исследованиях. 

При исследовании содержания ХС-ЛПНП в периферической крови 

беременных женщин с обострением ЦМВ инфекции на сроках 4-10 и 36-

37 недельбеременности выявлено снижение их показателей (табл. 9), что 

можно связать с повышенной окисляемостью вследствии изменений в 

составе ненасыщенных жирных кислот (Ишутина Н.А., 2014; Ишутина 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Husain%20F%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
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Н.А., Дорофиенко Н.Н., 2016; Луценко М.Т. и др., 2000). С другой сто-

роны, ЛПНП являются одними из поставщиков холестерола в фетопла-

центарную систему. Поэтому снижение их количества имеет серьезные 

последствия для матери и плода. 

 

Таблица 9. Содержание холестерола в составе липопопротеидов высокой и 

низкой плотности в периферической крови беременных женщин при физиологи-

ческой и осложненной цитомегаловирусной инфекцией беременности (ммоль/л) 

 

  

Следовательно, обострение ЦМВ инфекции на ранних и более 

поздних сроках беременности сопровождается изменением обмена хо-

лестерола в системе «мать – плацента», что вносит вклад в нарушение 

эндокринной функции плаценты, ее гистогенеза. Последнее вызывает 

развитие угрожающих состояний беременности.  

 

 

 

 

 

 

 

 

 

 

 

Сроки  

беременности 

Показатели Обострение 

ЦМВ 

 инфекции 

Р Физиологическое 

течение  

беременности 

4-10 недель  ХС-ЛПВП 

ХС-ЛПНП 

1,90 ± 0,07 

2,40 ± 0,10 

<0,05 

<0,05 

1,54 ± 0,09 

3,11 ± 0,15 

37-38 недель ХС-ЛПВП 

ХС-ЛПНП 

2,30 ± 0,11 

3,23 ± 0,07 

<0,05 

<0,05 

1,89 ± 0,06 

4,00 ± 0,09 
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ЗАКЛЮЧЕНИЕ 

 

 

 

 

На примере ЦМВ инфекции, которая является ведущей инфекци-

онной патологией, вызывающей развитие тяжелых осложнений бере-

менности, мы попытались изложить, не претендуя на всеобъемлющую 

полноту, не только традиционные взгляды, но и свое видение роли 

нарушений стероидогенеза и синтеза холестерола на различных этапах 

гистогенеза плаценты.   

В настоящее время можно утверждать, что плацента, начиная с 8 

недели беременности, становится основным местом синтеза прогестеро-

на и эстрогенов из холестерола и его предшественников.  

Прогестерон называют главным гормоном раннего этапа беремен-

ности, необходимым для успешной имплантации и развития зародыша. 

В мировой и отечественной литературе определена его ключевая роль в 

поддержании иммуносупрессии и тонуса гладкой мускулатуры матки за 

счет активации специфических ферментов, расщепляющих вазопрессин 

и окситоцин, а также снижения уровня простагландинов посредством 

уменьшения активности фосфолипазы и простагландинсинтетазы, что 

необходимо для сохранения беременности. 

Как показывают исследования, ЦМВ вносит существенный вклад 

в функциональную иммуносупрессию плаценты, поддерживающую ло-

кальное воспаление и снижение уровня эндогенного и плацентарного 

прогестерона, сопровождающего развитие таких осложнений беремен-

ности, как самопроизвольный аборт, на более поздних сроках – прежде-

временного разрыва плодных оболочек, среди неблагоприятных причин 

которого выделяют высокий риск развития интраамниальной и внутри-

маточной инфекции.  

К причинам нарушения прогестероногенеза в плаценте при ЦМВ 

инфекции можно отнести выявленное нами снижение 3β-

гидроксистероиддегидрогеназной активности трофобластов ворсин хо-

риона на разных сроках беременности.  



 

119 

 

Кроме того были гистохимически изучены и получены цитофото-

метрические показатели в ранней и зрелой плаценте функционально ак-

тивных метаболитов прогестерона – 5β-дигидропрогестерон и 5β-

прегнан-3α,20α-диол (токолитики гладкой мускулатуры матки), 5α-

прегнан-3β/α-ол-20-он и 5α-дигидропрогестерон (агонисты прогестеро-

нового рецептора и модуляторы рецептора GABAA  в матке), 20α-

дигидропрогестерон (модулятор гормональной активности прогестеро-

на). Осложнения беременности у женщин с обострением ЦМВ инфек-

ции на разных сроках беременности были ассоциированы с низкими по-

казателями плацентарных метаболитов прогестерона.  

В то же самое время, необходимым условием успешного заверше-

ния беременности является физиологическое увеличение синтеза андро-

генов (Makieva S., Saunders P.T.K., Norman J.E., 2014), которые, как из-

вестно, принимают непосредственное участие в процессах децидуализа-

ции (Ujvari D. et al., 2020; Younas K. et al., 2019; Gong H. et al., 2019). Ре-

зультатом их аберрантной продукции является недостаточная дециду-

альная трансформация стромы эндометрия, что нарушает процессы им-

плантации и приводит к гибели эмбриона. На более поздних сроках бе-

ременности недостаточность синтеза андрогенов сопровождается разви-

тием гипогонадизма у плода (Гончаров Н.П., 1996; Dumesic D.A. et al., 

2002; Miller W.L., 2005; Palter S.F. et al., 2001; Hasegawa T. et al., 2000).  

Необходимо особо отметить, что андрогеновая недостаточность, 

главным образом дефицит ДЭА, является причиной нарушения процес-

сов эстрогенобразования, что приводит к модуляции эстрогенового от-

вета в ранней и зрелой плаценте, усиливает эндокринные расстройства 

на фоне формируемого при обострении ЦМВ инфекции дефицита про-

гестерона. Гистохимически в плаценте было показано снижение интен-

сивности реакции и цитофотометрических показателей  дегидроэпиа-

нтростерона, андростерона и андростендиола. Серологические показа-

тели эндогенного ДЭА сульфата у беременных женщин с обострением 

ЦМВ инфекции в период беременности также были снижены. 

Доказательством нарушения синтеза эстрогенов из ДЭА в ранней 

и зрелой плаценте при обострении ЦМВ инфекции является выявленное 

нами снижение интенсивности гистохимической реакции на 17β-

гидроксистероиддегидрогеназу I типа. Серологически данный факт под-

тверждался снижением показателей эндогенного и плацентарного эст-
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радиола и эстриола, что свидетельствует о ЦМВ-индуцированной эстро-

ген-прогестероновой недостаточности, определяющей развитие ослож-

нений беременности.  

Фактором, способным изменять активность энзимов, катализиру-

ющих образование стероидных гормонов, может служить увеличение 

экспрессии TNF-α (Hamilton S.T. et al., 2012; Scott G.M. et al., 2012; 

Smith P.D. et al., 1992), которая отмечена при воспалении, сопровожда-

ющем обострение ЦМВ инфекции (Бабенко О., 2015; Гориков И.Н. и 

др., 2020; Луценко М.Т. и др., 2010; Andrievskaya I.A. et al., 2019). Инду-

цирование провоспалительных путей, включающих TNF-α, активирует 

апоптоз трофобласта (Луценко М.Т. и др., 2010; Haider S. et al., 2009; 

Garcia-Lloret M.I. et al., 2000; Chan G. et al., 2005; Chou D. et al., 2006), 

нарушая, тем самым стероидогенез, и, наоборот. Имеются сведения о 

влиянии окислительного стресса на нарушение плацентарного стерои-

догенеза (Hu X.Q. et al., 2019), в том числе, ЦМВ-индуцированого 

(Ишутина Н.А. и др., 2019; Lee Y.L. et al., 2014; Gutiérrez S.J. et al., 2008; 

Speir E. et al., 1996).  

Экспериментально доказано, что инфицирование ЦМВ дециду-

альной оболочки и инвазивных трофобластов (Pereira L. et al., 2005; 

Hemmings D.G. et al., 1998; Sinzger C. et al.,1993; Mühlemann K. et al., 

1992; Fisher S. et al., 2000; Pereira L. et al., 2017), инициирует каскад про-

воспалительных реакций и вторичных метаболических растройств в 

плаценте (Ieshchenko O.I. et al., 2002; Pereira L., 2018; Pereira L. et al., 

2008; Pereira L. et al., 2017), определяющих эффективность стероидоге-

неза.  

Особая роль в процессах строидогенеза в плаценте принадлежит 

холестеролу. Большой удельный вес в исследованиях занимает изучение 

транспорта и рециркуляции холестерола, ведется интенсивный поиск 

специфических ингибиторов ферментов, широко изучаются получение 

разных стероидных продуктов для поддержания репродуктивного здо-

ровья женщин. 

Литературные данные о холестероле ограничиваются описанием 

биохимических показателей крови, а что касается предшественников, то 

ими практически не занимались. Сведения о характере холестериноге-

неза при осложненном течении беременности незначительны и охваты-

вают вопросы, связанные с развитием гиперхолестеринемии у беремен-
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ных (Луценко М.Т., Пирогов А.Б., Гориков И.Н. и др., 2000; Соловьева 

А.С., Попов А.А., 2000). При ЦМВ инфекции в период беременности та-

ких исследований не проводилось. 

В наших исследованиях показано, что низкий уровень эндогенного 

и плацентарного холестерола при обострении ЦМВ инфекции, связан с 

нарушением его биосинтеза и регуляторных механизмов, поддерживае-

мых эстрогенами (Bartels Ä. et al., 2011; Azhar S. et al., 1985; Philip B.W., 

Shapiro D.J., 1981). Последнее приводит к развитию патологических ре-

акций в цепи взаимосвязанных процессов, когда пониженная продукция 

холестерола ассоциировалась с уменьшением образования эстрогенов, а 

их малая концентрация не способна регулировать синтез предшествен-

ника. Гистохимически нами показано снижение цитофотометрических 

показателей основных предшественников холестерола – мевалоната, 

сквалена и 7-дегидрохолестерина в ранней и зрелой плаценте при 

обострении ЦМВ инфекции. 

Таким образом, результаты исследований закономерностей гормо-

нального обмена в плаценте позволили по-новому подойти к изучению 

патогенеза эстроген-прогестероновой недостаточности, что может быть 

использовано для поиска новых стратегий терапевтических вмеша-

тельств, направленных на снижение неблагоприятных исходов беремен-

ности, и возможностей их профилактики при ЦМВ инфекции. 

Дальнейшее изучение процессов стероидогенеза в плаценте, уточ-

нение механизмов действия ферментных систем на метаболизм проге-

стерона и андрогенов, их участие в гистогенезе маточно-плацентарного 

комплекса, позволят в ближайшей перспективе решить многие пробле-

мы современного акушерства, связанные с невынашиванием беременно-

сти инфекционного генеза.     
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СПИСОК СОКРАЩЕНИЙ 

 

АКТГ  – адренокортикотропный гормон 

АПБ  – ацилпереносящий белок 

АТФ  – аденозинтрифосфорная кислота 

АЦ  – аденилатциклаза 

ГАМК  – гамма-аминомаслянная кислота 

ГГГН  – система гипокамп–гипоталамус–гипофиз–надпочечник  

ГМГ-КоА  – 3-гидрокси-3-метилглутарил-коэнзим А 

ГМФ  – гуанозинмонофосфат 

ГТФ  – гуанозинтрифосфат 

ДГП  – дигидропрогестерон 

ДГТ  – дигидротестостерон 

ДНК  – дезоксирибонуклеиновая кислота 

ДЭА  – дегидроэпиандростерон 

ДЭАС  – дегидроэпиандростерон-сульфат 

ЗВУР  – задержка внутриутробного развития  

КРГ  – кортикотропин-рилизинг гормон  

ЛПВП  – липопротеиды высокой плотности 

ЛПНП  – липопротеиды низкой плотности 

НАД  – никотинадениндинуклетид 

НАДФ  – никотинадениндинуклетидфосфат 

ПОЛ  – перекисное окисление липидов 

РНК  – рибонуклеиновая кислота 

СПКЯ  – синдром поликистозных яичников 

ФСГ  – фолликулостимулирующий гормон 

ХГ  – хорионический гонадотропин 

ХС  – холестерол  

цАМФ  – циклический аденозинмонофосфат 

цГМФ  – циклический гуанозинмонофосфат 

ЦМВ  – цитомегаловирус  

ЦНС  – центральная нервная система 

AKR  – альдокеторедуктаза  

Akt  – протеинкиназа В 
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АR  – рецептор андрогенов 

bFGF  – основной фактор роста фибробластов 

C/EBPβ  – англ. CCAAT/enhancer-binding protein beta 

CDK  – циклин-зависимая киназа 

CYP  – общее название ферментов семейства P450 

EGF  – эпидермальный фактор роста 

ER  – рецепторы эстрогенов 

ERK  – англ. extracellular signal-regulated kinase 

FGF  – фактор роста фибробластов  

FOXO  – англ. forkhead box protein O 

GABAA  – А субъединица рецептора гамма-аминомасляной кислоты 

GPER  – англ. G protein coupled estrogen receptor  

GRE  – англ. glucocorticoid response elements 

HB-EGF  – гепаринсвязывающий EGF-подобный фактор роста  

HGF  – гемопоэтический фактор роста 

Hmox1  – гемоксигеназа 1  

HSD  – гидроксистероиддегидрогеназа 

Ig  – иммуноглобулин 

IGF  – инсулиноподобный фактор роста 

IGFBP  – англ. insulin like growth factor binding protein  

IL  – интерлейкин 

JAK  – англ. Janus kinase  

LIF  – англ. leukemia inhibitory factor 

mAR  – мембрано-связанный рецептор андрогенов  

MAРK  – англ. mitogen-activated protein kinase 

ME  – метоксиэстрадиол 

MLCK  – англ. myosin light-chain kinase 

MMP  – матриксная металлопротеиназа 

mPR  – мембранные рецепторы прогестерона 

NK  – натуральные киллеры 

NMDA  – N-метил-D-аспартат  

NF-kB  – ядерный транскрипционный фактор kB 

PDGF  – тромбоцитарный ростовой фактор 

PI3K  – англ. phosphoinositide 3-kinases 

PIBF  – англ. progesterone induced blocking factor 
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PIGF  – плацентарный фактор роста  

PR  – рецептор прогестерона 

PXN  – паксиллин 

ROCCs  – англ. receptor-operated Ca2+ channels   

ROS  – активные формы кислорода 

SCAP  – англ. SREBP cleavage-activating protein 

SGK  – англ. serum/glucocorticoid-induced kinase   

SREBP  – англ. sterol regulatory element-binding protein 

StAR  – англ. steroidogenic acute regulator 

STAT  – англ. signal transducer and activator of transcription  

TGF  – трансформирующий фактор роста  

Th  – Т-хелперы 

TNF  – фактор некроза опухоли 

UDP  – уридин-5'-дифосфат 

VEGF  – сосудистый эндотелиальный фактор роста 

VOCCs  – англ. voltage-operated Ca2+ channels 

YAP  – Yes-связанный белок 
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